Fast Pyrolysis of Napier Grass Catalyzed by Encapsulated Cu([H4]salen)

Document Type : Research Article


1 Jiangsu Key Laboratory for Bioresources of Saline Soils, Yancheng Teachers University, Yancheng, P.O. Box 224051, P.R. CHINA

2 Faculty of Chemical Engineering, Kunming University of Science and Technology (Corresponding affiliation), Kunming, 650500, P.R. CHINA



< p>Napier grass can serve as a feedstock for bio-oil production, and the aim of this work comparatively evaluated the effect of catalysis by Cu([H4]salen) on pyrolysis of Napier grass relevant to bio-oil generation. The bio-oil, char, and gas produced during the pyrolysis of Napier grass were identified and quantified. The chemical composition of bio-oil was correlated with the catalysis. Bio-oil quality was analyzed by characterization, with a high content of phenolics, low content of oxygen, and a high heating value on the catalytic effect. The results obtained in this work suggested that a significant improvement has been proven for bio-oil quality compared to what has been reported in the literature.


Main Subjects

[1] Chu K.C., Kaifuku K., Saitou K., Optimal Integration of Alternative Energy Sources in Production Systems With Customer Demand Forecast, IEEE T. Autom. Sci. Eng., 13 (1):206-214 (2016).
[2] Zhang M., Resende F.L.P., Moutsoglou A., Raynie D.E., Pyrolysis of Lignin Extracted From Prairie Cordgrass, Aspen, and Kraft LigninBy Py-GC/MS and TGA/FTIR, J. Anal. Appl. Pyrol., 9: 65-71 (2012).
[4] Mohammed I.Y., Abakr Y.A., Kazi F.K., Yusup S., Alshareef I., Chin S. A., Comprehensive Characterization of Napier Grass as a Feedstock for Thermochemical Conversion, Energies, 8(5): 3403-3417 (2015).
[5] Lee M.-K., Tsai W.-T., Tsai Y.-L., Lin S.-H., Pyrolysis of Napier Grass in An Induction-Heating Reactor, J. Anal. Appl. Pyrol., 88 (2): 110-116 (2010).
[6] Lien C.-C., Liu H.-W., Shear CharacteristicsofNapier Grass Stems, Appl. Eng. Agric., 31 (1): 5-13 (2015).
[8] Nadji H., Diouf P.N., Benaboura A., Bedard Y., Riedl B., Stevanovic T., Comparative Study of Lignins Isolated from Alfa Grass (Stipa Tenacissima L.), Bioresource Technol., 100:3585-3592 (2009).
[9] Lourenço A., Rencoret J., Chemetova C., Gominho J., Gutiérrez A., Pereira H., del Río J.C., Isolation and Structural Characterization of Lignin from Cardoon (Cynara Cardunculus L.) Stalks, Bioenerg. Res., 8:1946-1955 (2015).
[10] Li D., Zhong G.Q., Zang Q., Solid-Solid Synthesis, Crystal Structure and Thermal Decomposition of Copper(II) Complex of 2-Picolinic Acid, Iran. J. Chem. Chem. Eng. (IJCCE),35 (4): 21-29 (2016).
[11] Ryczkowski R., Niewiadomski M., Michalkiewicz B., Skiba Z., Ruppert A.M., Grams J.,Effect of Alkali and Alkaline Earth Metals Addition on Ni/ZrO2 Catalyst Activity in Cellulose Conversion, J. Therm. Anal. Calorim., 126 (1): 103-110 (2016).
[12] Donar Y.O., Sinag A., Catalytic Effect of Tin Oxide Nanoparticles on Cellulose Pyrolysis, J. Anal. Appl. Pyrol., 11: 69-74 (2016).
[13] Feyzi M., Zinatizadeh A.L., Nouri P., Jafari F., Catalytic Performance and Characterization of Promoted K-La/ZSM-5 Nanocatalyst for Biodiesel Production, Iran. J. Chem. Chem. Eng.(IJCCE), 37 (2): 33-44 (2018).
[14] Li J., Li X.Y., Zhou G. Q., Wang W., Wang C.W., Komarneni S., Wang Y.J., Catalytic Fast Pyrolysis of Biomass with Mesoporous ZSM-5 Zeolites Prepared by Desilication with NaOH Solutions, Appl. Catal. A-Gen., 470: 115-122 (2014).
[16] Ambrose K., Hurisso B.B., Singer R.D., Recyclable Ionic Liquid Tagged Co(Salen) Catalyst for the Oxidation of Lignin Model Compounds, Can. J. Chem., 91 (12): 1258-1261 (2013).
[17] Carradori S., Monte C.D., D’Ascenzio M., Secci D., Celik G., Ceruso M., Vullo D., Scozzafava A., Supuran C.T., Salen and Tetrahydrosalen Derivatives as Effective Inhibitors of the Tumor-Associated Carbonic Anhydrase XII—A New Scaffold for Designing Isoform-Selective Inhibitors, Bioorg. Med. Chem. Lett., 23 (24): 6759-6763 (2013).
[18] Zhou X.-F., Selective Oxidation of Kraft Lignin over Zeolite--Encapsulated Co(II) [H4]salen and [H2]salen Complexes, J. Appl. Polym. Sci., 131 (18): 9594-9602 (2014).
[20] Andrade L.A., Barrozo M.A.S., Vieira L.G.M., Thermo-Chemical Behavior and Product Formation During Pyrolysis of Mango Seed ShellInd. Crop. Prod., 85:174-180 (2016).
[21] Stefanidis S.D., Kalogiannis K.G., Iliopoulou E.F., Michailof C.M., Pilavachi P.A., Lappas A.A., A Study of Lignocellulosic Biomass Pyrolysis via the Pyrolysis of Cellulose, Hemicellulose and Lignin, J. Anal. Appl. Pyrol., 105: 143-150 (2014).
[24] Murata K., Liu Y., Watanabe M.M, Inaba M., Production of Bio-Oil from a Botryococcus Braunii Residue, J. Anal. Appl. Pyrol., 114: 187-196 (2015).
[25] Williams P.T., Horne P.A., The InfluenceofCatalystRegenerationon the Composition of Zeolite-Upgraded Biomass Pyrolysis Oils, Fuel, 74(12): 1839-1851(1995).
[26] Lin Y., Zhang C., Zhang M., Zhang J., Deoxygenation of Bio-oil during Pyrolysis of Biomass in the presence of CaO in a Fluidized-Bed Reactor, Energy.&Fuel., 24 (10): 5686-5695 (2010). 
[27]Puertolas B., Keller T.C., Mitchell S., Pérez-Ramírez J., Deoxygenation of Bio-Oil over Solid Base Catalysts: From Model to Realistic Feeds, Appl. Catal. B Environ., 18: 77-86 (2016).
[29] Han Y., McIlroy D.N., McDonald A.G., Hydrodeoxygenation of Pyrolysis Oil for hydrocarbon Production Using Nano spring BasedCatalysts, J. Anal. Appl. Pyrol., 117: 94-105 (2016).
[30] Imran A.A., Bramer E.A., Seshan K., Brem G., Catalytic FlashPyrolysis oOil-Impregnated-Wood and Jatropha Cake Using Sodium Based Catalysts, J. Anal. Appl. Pyrol., 117: 236-246 (2016).
[31] Wood C., Rosentrater K.A., Muthukumarappan K., Pyrolysis of Ethanol Coproducts, Ind. Crop. Prod., 56:118-127 (2014).
[32] Chatterjee G.; Shadangi K.P., Mohanty K., Fuel Properties and Composition Study of Cassia Siamea Seed Crude Pyrolytic Oil and Char, Fuel, 234: 609-615 (2018).