Utilization of Peanut (Arachis hypogaea) Hull Based Activated Carbon for the Removal of Amaranth Dye from Aqueous Solutions

Document Type : Research Article

Authors

Department of Chemistry, University of Gujrat, Gujrat, 50700 PAKISTAN

10.30492/ijcce.2019.34951

Abstract

This research work is concerned with the investigation of removing amaranth foodstuff dye on activated carbon derived from peanut hulls (ACPH) as a low-cost adsorbent. The influence of different reaction parameters affecting dye uptake including pH, shaking speed, particle size, temperature, initial dye concentration, and contact time were investigated for proper selection of the optimized parameters for the removal process. By using ACPH, 76.92 mg/g adsorption capacity was achieved under agitation time of 90 min at pH 4 and temperature 60°C.  Results clearly demonstrate that experimental equilibrium data were fitted to Langmuir isotherm to a greater extent than Freundlich isotherm. Kinetics of amaranth dye on peanut hulls was found to follow pseudo-second-order kinetics. Results indicated that ACPH is a good adsorbent for removing amaranth dye from wastewater.

Keywords

Main Subjects


[1] Yesilada O., Asma D., Cing S., Decolorization of Textile Dyes by Fungal Pellets, Process Biochem., 38(6): 933-938 (2003).
[2] Gottlieb A., Shaw C., Smith A., Wheatley A., Forsythe S., The Toxicity of Textile Reactive Azo Dyes After Hydrolysis and Decolourisation, J. Biotechnol., 101(1): 49-56 (2003).
[3] Sulyman M., Namiesnik J., Gierak A., Utilization of New Activated Carbon Derived from Oak Leaves for Removal of Crystal Violet from Aqueous Solution, Pol. J. Environ. Stud., 23(6): 2223-2232 (2014).
[5] Ho, Y.S., McKay, G., Sorption of Dye from Aqueous Solution by Peat, Chem. Eng. J., 70(2): 115-124 (1998).
[6] Ganesh R., Boardman G.D., Michelsen D., Fate of Azo Dyes in Sludges, Water Res., 28(6): 1367-1376 (1994).
[7] Wang C., Yediler A., Lienert D., Wang Z., Kettrup A., Toxicity Evaluation of Reactive Dyestuffs, Auxiliaries and Selected Effluents in Textile Finishing Industry to Luminescent Bacteria Vibrio Fischeri, Chemosphere., 46(2): 339-344 (2002).
[8] Pearce C., Lloyd J., Guthrie J., The removal of Colour from Textile Wastewater Using Whole Bacterial Cells: A Review, Dyes Pigm., 58(3): 179-196 (2003).
[9] Poul M., Jarry G., Elhkim M.O., Poul J.M., Lack of Genotoxic Effect of Food Dyes Amaranth, Sunset Yellow and Tartrazine and Their Metabolites in the Gut Micronucleus Assay in Mice, Food Chem. Toxicol., 47(2): 443-448 (2009).
[10] Al-Bastaki N., Removal of Methyl Orange Dye and Na2SO4 Salt from Synthetic Waste Water Using Reverse Osmosis, Chem. Eng. Process-Process Intensification., 43(12): 1561-1567 (2004).
[11] Suksaroj, C., Heran, M., Allegre, C., and Persin, F., Treatment of Textile Plant Effluent by Nanofiltration and/or Reverse Osmosis for Water Reuse, Desalination., 178(1): 333-341 (2005).
[12] Aleboyeh, A., Daneshvar, N., and Kasiri, M.B., Optimization of CI Acid Red 14 Azo Dye Removal by Electrocoagulation Batch Process with Response Surface Methodology, Chem. Eng. Process-Process Intensification., 47(5): 827-832 (2008).
[13] Beltrán‐Heredia J., Sánchez Martín J., Azo Dye Removal by Moringa Oleifera Seed Extract Coagulation, Coloration Technol., 124(5): 310-317 (2008).
[14] Gupta V.K., Ali I., Saleh T.A., Nayak A., Agarwal S., Chemical Treatment Technologies for Waste-Water Recycling—an Overview, RSC Adv., 2(16): 6380-6388 (2012).
[16] Liao P., Malik Ismael Z., Zhang W., Yuan S., Tong M., Wang K., Bao J., Adsorption of Dyes from Aqueous Solutions by Microwave Modified Bamboo Charcoal, Chem. Eng. J., 195–196: 339-346 (2012).
[17] Pietrelli L., Francolini I., Piozzi A., Dyes Adsorption from Aqueous Solutions by Chitosan, Sep. Sci. Technol., 50(8): 1101-1107 (2015).
[18] Rani S., Sumanjit K., Mahajan R.K., Comparative Study of Surface Modified Carbonized Eichhornia crassipes for Adsorption of Dye Safranin, Sep. Sci. Technol., 50(16): 2436-2447 (2015).
[19] Rahman, A., Kishimoto, N., and Urabe, T., Adsorption Characteristics of Clay Adsorbents – Sepiolite, Kaolin and Synthetic Talc – for Removal of Reactive Yellow 138:1, Water Environ. J., 29(3): 375-382 (2015).
[20] Zafar M.N., Nadeem R., Hanif M.A., Biosorption of Nickel from Protonated Rice Bran, J. Hazard. Mater., 143(1–2): 478-485 (2007).
[21] Haq A.u., Shah J., Jan M.R., Din S.u., Kinetic, Equilibrium and Thermodynamic Studies for the Sorption of Metribuzin from Aqueous Solution Using Banana Peels, an Agro-Based Biomass, Toxicol. Environ. Chem., 97(2): 124-134 (2015).
[22] Ishaq M., Saeed K., Ahmad I., Sultan S., Akhtar S., Coal Ash as a Low Cost Adsorbent for the Removal of Xylenol Orange from Aqueous Solution, Iran. J. Chem. Chem. Eng. (IJCCE), 33(1): 53-58 (2014).
[23] Bouguettoucha A., Reffas A., Chebli D., Amrane A., Adsorption of the Cationic Dye Ethyl Violet on Acid and Alkali-Treated Wild Carob Powder, A Low-Cost Adsorbent Derived from Forest Waste, Iran. J. Chem. Chem. Eng. (IJCCE), 36(1): 87-96 (2017).
[24] Gong R., Ding Y., Li M., Yang C., Liu H., Sun Y., Utilization of Powdered Peanut Hull as Biosorbent for Removal of Anionic Dyes from Aqueous Solution, Dyes Pigm., 64(3): 187-192 (2005).
[25] Raffa R.B., Wu C., Stone D.J., Borenstein M.R., Codd E.E., Coogan T.P., Determination of the Adsorption of Tramadol Hydrochloride by Activated Charcoal in Vitro and in Vivo, J. Pharmacol. Toxicol. Methods., 43(3): 205-210 (2000).
[26] Gong R., Sun Y., Chen J., Liu H., Yang C., Effect of Chemical Modification on Dye Adsorption Capacity of Peanut Hull, Dyes Pigm., 67(3): 175-181 (2005).
[27] Yang C., Ke L.X., Gong R.M., Liu H.J., Sun Y.Z., Utilization of Powdered Peanut Hull as Biosorbent for Removal of Azo Dyes from Aqueous Solution, J. Biol., 2: 016 (2005).
[28] Chang I.-S., Le Clech P., Jefferson B., Judd S., Membrane Fouling in Membrane Bioreactors for Wastewater Treatment, J. Environ. Eng., 128(11): 1018-1029 (2002).
[29] Langmuir, I., Adsorption of Gases on Plane Surfaces of Glass, Mica and Platinum, J. Am. Chem. Soc., 40: 1361-1403 (1918).
[30] Freundlich, H., Adsorption in Solutions, J. Phys. Chem., 57: 384-410 (1906).
[31] Lagergren, S., About the Theory of So-Called Adsorption of Soluble Substances, K. Sven. Vetenskakad. Handl., 24(4): 1-39 (1898).
[32] Ho Y.S., McKay G., Pseudo-Second order Model for Sorption Processes, Process Biochem., 34(5): 451-465 (1999).
[33] Zafar M.N., Aslam I., Nadeem R., Munir S., Rana U.A., Khan S.U.-D., Characterization of Chemically Modified Biosorbents from Rice Bran for Biosorption of Ni(II), J. Taiwan Inst. Chem. Eng., 46: 82-88 (2015).
[37] Abdellaoui K., Pavlovic I., Bouhent M., Benhamou A., Barriga C., A Comparative Study of the Amaranth Azo Dye Adsorption/desorption from Aqueous Solutions by Layered Double Hydroxides, Appl. Clay Sci., 143: 142-150 (2017).
[38] Guerrero-Coronilla I., Morales-Barrera L., Cristiani-Urbina E., Kinetic, Isotherm and thermodynamic Studies of Amaranth Dye Biosorption from Aqueous Solution onto Water Hyacinth Leaves, J. Environ. Manage., 152: 99-108 (2015).
[39] Huo Y., Wu H., Wang Z., Wang F., Liu Y., Feng Y., Zhao Y., Preparation of Core/Shell Nanocomposite Adsorbents Based on Amine Polymer-Modified Magnetic Materials for the Efficient Adsorption of Anionic Dyes, Colloids Surf. A: Physicochem. Eng. Asp., 549: 174-183 (2018).