Cu-phthalocyanine Coated Hybrid Magnetic Nanoparticles: Preparation and Application in the Synthesis of Mono- and Bis pyrano[2,3-d]pyrimidinones and mono- and Bis-2-amino-4H-pyrans

Document Type: Research Article


Department of Chemistry, Faculty of Science, Arak University, P.O. Box 38156-8-8349 Arak, I.R. IRAN


In this research, Cu-phthalocyanine coated hybrid magnetic nanoparticles have been prepared in a simple method and evaluated as an efficient catalyst in the preparation of mono- and bis-pyrano[2,3-d]pyrimidinones and mono- and bis-2-amino-4H-pyrans from the condensation reaction of 1,3-dimethylbarbituric acid or 4-hydroxycumarin with malononitrile and mono- and bis-aldehydes under ultrasonic irradiation. The catalyst could be easily recovered in the presence of the external magnetic field and reused five times without significant loss of activity and mass. The magnetic nanoparticles were characterized using Fourier Transform InfraRed (FT-IR) spectra, X-Ray Diffraction (XRD) spectroscopy, Scanning Electron Microscopy (SEM), Thermal Gravimetric Analysis (TGA). The results showed the spherical structures of hybrid magnetic nanoparticles and the average size is about 37 nm.


Main Subjects

[1] Kumar T.M.M., Achar B.N., Synthesis and Characterization of Lead Phthalocyanine and Its Derivatives, J. Organomet. Chem., 691: 331-336 (2006).

[2] (a) Kikuchi E., Kitada S., Ohno A., Aramaki S., Maenosono S., Solution-Processed Polymer-Free Photovoltaic Devices Consisting of PbSe Colloidal Quantum Dots and Tetrabenzoporphyrins, Appl. Phys. Lett., 92: 173307(2008)

        (b) Yamada H., Kamio N., Ohishi A., Kawano M., Okujima T., Ono N., Photocurrent Generation by Benzoporphyrin Films Prepared by a Solution Process, J. Porphyr. Phthalocya. 11: 383-389 (2007).

[3] Torre G., Bottari G., Hahn U., Torres T., Functional Phthalocyanines: Synthesis, Nanostructuration and Electro Optical Applications, Struct. Bonding, 135: 1-44 (2010).

[4] Shuguang B., Xianggao L., Lei S., Jianfeng C., Mater J., Synthesis and Photoconductivity of Nanosized Phthalocyanine, Sci. Technol., 22: 533-535(2006).

[5] Liu Y., OFlaherty S M., Chen Y., Araki Y., Bai J., Doyle J., Blau W.J., Ito O., Photophysical and Nonlinear Optical Properties of μ-oxo-bridged Indium and Gallium Phthalocyanines, Dyes Pigments, 75: 88-92(2007).

[6] Zhang W., Ishimaru A., Onouchi H., Rai R., Saxena A., Ohira A., Ishikawa M., Naito M., Fujiki M., Ambidextrous Optically Active Copper(II) Phthalocyanine Supramolecules Induced by Peripheral Group Homochirality, New J. Chem., 34: 2310(2010).

[8] Ehsani M.R., Safadoost A.R., Avazzadeh R., Barkhordari A., Kinetic Study of Ethyl Mercaptan Oxidation in Presence of Merox Catalyst, Iran. J. Chem. Chem. Eng., 32: 71-80 (2013).

[9] Fischer H., Schulz-Ekloff G., Buck T., Woehrle D., Vassileva M., Andreev A., Mercaptan Adsorption Capacity and Catalytic Oxidation Activity of Silica-Supported Phthalocyanines, Langmuir, 8: 2720–2723 (1992).

[10] Kockrick E., Lescouet T., Kudrik E V., Sorokin A B., Farrusseng D., Synergistic Effects of Encapsulated Phthalocyanine Complexes in in MIL-101 for the Selective Aerobic Oxidation of Tetralin, Chem. Commun., 47: 1562-1564(2011).

[11] Sorokin A B., Kudrik, E V., Phthalocyanine Metal Complexes: Versatile Catalysts for Selective Oxidation and Bleaching, Catal. Today, 159: 37–46 (2011).

[12] Kothandapani J., Ganesan A., Ganesan  S  S., Nano-Magnetic Sulfonic Acid Catalyzed Facile Synthesis of Diverse Amide Derivatives, Synthesis, 49:685-692(2017).

[13] Sheykhan  M., Ma’mani  L., Ebrahimi  A., Heydari  A., Sulfamic Acid Heterogenized on Hydroxyapatite-Encapsulated γ-Fe2O3 Nanoparticles as a Magnetic Green Interphase Catalyst, J. Mol. Catal. A: Chem., 335: 253-261(2011).

[16] Laska U., Frost C G., Price J G., Plucinski P K., Easy-Separable Magnetic Nanoparticle-Supported Pd Catalysts: Kinetics, Stability and Catalyst re-Use, J. Catal., 268: 318(2009).

[17] Xu M Z., Meng F B., Zhao R., Zhan  Y  Q., Lei  Y  J., Liu X B., Iron phthalocyanine oligomer/Fe3O4 hybrid microspheres and their microwave absorption  property, J. Magn. Magn. Mater. 323: 2174-2178(2011).

[18] (a) Anderson G L., Shim  J L., Broom A D., Pyrido[2,3-d]pyrimidines. IV. Synthetic studies leading to various oxopyrido[2,3-d]pyrimidines, J. Org. Chem., 41:1095–1099(1976); (b) Grivaky E M., Lee S., Siyal C W., Duch D S., Nichol C. A., Synthesis and antitumor activity of 2,4-diamino-6-(2,5-dimethoxybenzyl)-5-methylpyrido[2,3-d]pyrimidineSulfuric Acid Functionalized, J. Med. Chem., 23: 327–329(1980).

[20] Sakuma Y., Hasegawa M., Kataoka K., Hoshina K., Yamazaki N., Kadota T., Yamaguchi H., 1,10-Phenanthroline Derivatives,  PCT Int. Appl., WO 9105785, 1989; Chem. Abstr., 115: 71646(1991).

[21] Ahluwalia V K., Batla R., Khurana A., Kumar R., Synthesis of 1,3-diaryl-7,7'-diethyl-5-methyl-4-oxo-2-thioxo thioxo 1,2,3,4-tetrahydro- 7H- pyrano[2,3-d]pyrimidinesInd. J. Chem., 29: 1141–1142(1990).

[22] Hatakeyama S., Ochi N., Numata H., Takano S., A new route to substituted 3-methoxycarbonyldihydropyrans; enantioselective synthesis of (–)-methyl elenolate, J. Chem. Soc. Chem. Commun. 17: 1202-1204(1988).

[23] Kumar D., Reddy V B., Sharad S., Dube U., Kapur  S., A facile one-pot green synthesis and antibacterial activity of 2-amino-4H-pyrans and 2- amino-5-oxo-5,6,7,8-tetrahydro-4H-chromenes, Eur. J. Med. Chem44: 3805-3809(2009).

[25] Bonsignore L., Loy G., Secci D., Calignano A., Synthesis and pharmacological activity of 2-oxo-(2H) 1-benzopyran-3-carboxamide derivativesEur. J. Med. Chem., 28: 517-520(1993).

[26] Wang J L., Liu D., Zhang Z J., Shan S., Han X., Srinivasula S M., Croce C M., Alnemri E S., Huang Z., Structure-based discovery of an organic compound that binds Bcl-2 protein and induces apoptosis of tumor cells, Proc. Natl. Acad. Sci. U.S.A., 97: 7124-7129(2000).

[27] Konkoy C S., Fick D B., Cai S X., Lan N C., Keana  J F W., PCT Int. Appl. WO 0075123, 2000, Chem. Abstr., 134: 29313a(2001).

[32] Ryabova O B., Makarov V A., Alekseeva L M., Shashkov A S., Chernyshev V V., Granik V G., Transformations of ortho-methoxyaryl(hetaryl)carboxamides into quinazolin-4-one and pyrido[2,3-d]pyrimidin-4-one derivatives, Russ. Chem. Bull., Int. Ed., 54: 1907-1914(2005).

[35] Shi D Q., Zhang S., Zhuang Q Y., Tu S J., Hu H W., Clean Synthesis of 2-Amino-3-cyano-4-aryl-7,7-dimethyl-5-oxo-4H-5,6, 7,8-tetrahydrobenzo[b] pyran in Water, Chin. J. Org. Chem., 23: 877-879(2003).

[36] Wang L M., Shao J H., Tian H., Wang Y H., Liu B., Rare earth perfluorooctanoate [RE(PFO)3] catalyzed one-pot synthesis of benzopyran derivativesJ. Fluorine Chem., 127: 97-100(2006).

[38] Balalaie S., Bararjanian M., Amani A M., Movassagh B., (S)-Proline as a Neutral and Efficient Catalyst for the One-Pot Synthesis of Tetrahydrobenzo[b]pyran Derivatives in Aqueous Media, Synlett., 2: 263-266(2006).

[42] Hekmatshoar R., Majedi S., Bakhtiari K., Sodium selenate catalyzed simple and efficient synthesis of tetrahydro benzo[b]pyran derivatives, Catal. Commun., 9: 307-310(2008).

[43] Seshu Babu N., Pasha N., Venkateswara Roa K T., Sai Prasad P S., Lingaiah N., A heterogeneous strong basic Mg/La mixed oxide catalyst for efficient synthesis of polyfunctionalized pyrans, Tetrahedron Lett., 49: 2730-2733(2008).

        (b) Zhou J F., Tu S J., Gao Y., Ji M., One pot synthesis of pyrans and pyrano[2, 3-c] pyrazole derivatives under microwave, Chin. J. Org. Chem., 21: 742(2001).

[45] Heravi M M., Zakeri M., Mohammadi N., Morpholine Catalyzed One-pot Multicomponent Synthesis of Compounds Containing Chromene Core in Water, Chin. J. Chem., 29: 1163–1166(2011). 

[46] Wu M., Feng Q., Wan D., Ma J., CTACl as Catalyst for Four-Component, One-Pot Synthesis of Pyranopyrazole Derivatives in Aqueous Medium, Synth. Commun., 43: 1721-1726(2013).

[47] Jin T S., Xiao J C., Wang S J., Li T S., Song X R., An Efficient and Convenient Approach to the Synthesis of Benzopyrans by a Three- Component Coupling of One-Pot Reaction, Synlett., 2001-2004(2003).

[48] Shaojun S., Zixing S., Yong J., A Cheap Amino Alcohol Catalyzed One-Pot, Tri-Component Synthesis of Tetrahydrochromene Derivatives, Lett. Org. Chem., 7: 64-68(2010).

[49] Fotouhi L., Heravi M M., Fatehi A., Bakhtiari K., Electrogenerated base-promoted synthesis of tetrahydrobenzo[b]pyran derivatives, Tetraherdon Lett., 48:  5379-5381(2007).

[50] Bararjanian M., Balalaie S., Movassagh B A., Amani M., One-pot synthesis of pyrano[2,3-d]pyrimidinone derivatives catalyzed by L-proline in aqueous media, J. Iran .Chem. Soc., 6: 436-442(2009).

[52] Peng Z G., Hidajat K., Uddin M S., Adsorption of bovine serum albumin on nanosized magnetic particles, J. Colloid Interf. Sci., 271: 277-283(2004).

[54] Ghosh S., Badruddoza A Z M., Uddin M S., Hidajat K., Adsorption of chiral aromatic amino acids onto carboxymethyl -β-cyclodextrin bonded Fe3O4/SiO2 core–shell nanoparticles, J. Colloid Interf. Sci., 354: 483-492(2011).

[57] Karimi A.R., Sourinia M., Dalirnasab Z., Karimi M., Silica Sulfuric Acid Magnetic Nanoparticle: an Efficient and Ecofriendly Catalyst for Synthesis of Spiro[2-amino-4H-pyran-oxindole]s, Can. J. Chem,  93: 546–549 (2015).