Hybridization of Cuckoo Search and Firefly Algorithms to Calculate the Interaction Parameters in Phase Equilibrium Modeling Problems

Document Type: Research Article


1 Department of Chemical Engineering, University of Biskra, ALGERIA

2 Laboratoire de Recherche en Génie Civil, Hydraulique, Développement Durable et Environnement (LAR- GHYDE), University Mohamed Kheider- Biskra, ALGERIA

3 Address: Laboratoire de Recherche en Génie Civil, Hydraulique, Développement Durable et Environnement (LAR- GHYDE), University Mohamed Kheider- Biskra, ALGERIA


Liquid-liquid equilibrium (LLE) problems such as phase stability analysis, phase equilibrium calculations, chemical equilibrium calculations, binary interaction parameter identification of thermodynamic models and other problems of fluid characterization have been the core subject of many recent studies. This study introduces Cuckoo Search (CS), Firefly Algorithms (FA) and its variants as parameter identification methods for modeling the activity coefficients of 30 ternary systems using the NRTL and UNIQUAC models. In addition, we analyze and compare the performance of these algorithms to that of the other algorithms. The results show that the hybridization of CS and FA performs better in both speed and accuracy than similar problems based on the other met-heurists methods.


Main Subjects

[1] Rangaiah G. P., “Stochastic Global Optimization: Techniques and Applications in Chemical”, World Scientific, Singapore (2010).
 [2] Merzougui A., Bonilla Petriciolet A., Mebaraka T., Design Optimization of an Auto-Thermal Ammonia Synthesis Reactor Using Genetic Algorithm,Algerian Journal of Engineering Research, 3: 54-56 (2018).
[3] Priyadharshini N.M., Evolutionary Algorithm Based Controller for Heat Exchanger, ARPN Journal of Engineering and Applied Sciences, OL.,13(7): 2369-2373 (2018) 
[4] Prodip K. K., Elkamel A., Francisco M. V., Muhammad U. F.,Genetic Algorithm for Multi-Parameter Estimation in Sorption and Phase Equilibria Problems, Chemical Engineering Communications, 205(3): 338-349 (2018).
[5] Enrique M. C.T., Broderick C., Juan A. G.P., Ricardo S., José M. L.G.,A New Metaheuristic Inspired by the Vapour-Liquid Equilibrium for Continuous Optimization, Appl. Sci.,8(11):1-36 (2018)
[6] Dritsas I., “Stochastic Optimization - Seeing the Optimal for the Uncertain”, 1st ed., InTech, Croatia (2011).
[7] Teh Y.S., Rangaiah G.P., A Study of Equation-Solving and Gibbs Free Energy Minimization Methods
for Phase Equilibrium Calculations
, Chemical Engineering Research and Design,80:7745-759 (2002).
[8] Floudas C.A., Pardalos P., Adjiman C., Esposito W.R., Gümüs Z.H., Harding S.T., Klepeis J.L., Meyer C.A., Schweiger C.A.,“Handbook of Test Problems in Local and Global Optimization”, Kluwer Academic Publishers, ISBN: 0-7923-5801-5, Netherlands (1999).
[9] Rothlauf F., Design of Modern Heuristics: Principles and Application, 1st ed.,Springer (2011).
[10] Shah-Hosseini H., “Optimization with the Nature-Inspired Intelligent Water Drops Algorithm, Wellington Pinheiro dos Santos”, IntechOpen (2009).
[11] Behzadi B., Ghotbi C., Galindo A., Application of the Simplex Simulated Annealing Technique to Nonlinear Parameter Optimization for the SAFT-VR Equation of State, Chemical Engineering Science, 60: 6607-6621(2005).
[13] Fernández-Vargas J. A., Segovia-Hernández J. G., An Improved Ant Colony Optimization Method and Its Application for the Thermodynamic Modeling of Phase Equilibrium, Fluid Phase Equilibria, 353: 121-131 (2013).
[14] Bonilla-Petriciolet A., Fateen S.E.K., Rangaiah G.P.,Assessment of Capabilities and Limitations of Stochastic Global Optimization Methods for Modeling Mean Activity Coefficients of Ionic Liquids,Fluid Phase Equilibria, 340 :15-26 (2013)
[16] Shehata M.N., Fateen S.E. K., Bonilla-Petriciolet A., Critical Point Calculations of Multi-Component Reservoir Fluids Using Nature-Inspired MetaheuristicAlgorithms, Fluid Phase Equilibria,409:280-290 (2016)
[17] IztokFister Jr., et al., A  Brief Review of  Nature-Inspired Algorithms for Optimization, ElektrotehniskiVestnik, 80(3): 1-7 (2013).
[18] Srinivas M., Rangaiah G.P.,  A Study of Differential Evolution and TabuSearch for Benchmark, Phase Stability and Phase Equilibrium Problems,Comput. Chem. Eng.,31: 760–772 (2007).
[19] Merzougui A., Labed N., Hasseine A., Bonilla-Petriciolet A., Laiadi D., Bacha O., Parameter Identification in Liquid-Liquid Equilibrium Modeling of Food-Related Thermodynamic Systems Using Flower Pollination Algorithms, The Open Chemical Engineering Journal, 10: 59-73 (2016).
[22] Nima S., John M. S., Rapid and Robust Phase BehaviourStability Analysis Using Global Optimization, Fluid Phase Equilibria,264: 137-146 (2008)
[23] Ferrari J.C., Nagatani G., Corazza F.C., Oliveira J.V., Corazza M.L, Application of Stochastic Algorithms for Parameter Estimation in the Liquid–Liquid Phase Equilibrium Modeling,Fluid Phase Equilibria,280: 110-119 (2009).
[24] Bonilla-Petriciolet A., Fateen S.E.K., Rangaiah G.P., Assessment of Capabilities and Limitations of Stochastic Global Optimization Methods for Modeling Mean Activity Coefficients of Ionic Liquids,Fluid Phase Equilibria,340: 15–26 (2013).
[26] Merzougui A., Hasseine A., Laiadi D.,  Application of the Harmony Search Algorithm to Calculate
the Interaction Parameters in Liquid-Liquid Phase Equilibrium Modeling
, Fluid Phase Equilibria, 324: 94–101 (2012)
[27] Bhargava V., Fateen S.E.K, Bonilla-Petriciolet A., Cuckoo Search: A New Nature-Inspired Optimization Method for Phase Equilibrium calculations, Fluid Phase Equilibria,337: 191–200 (2013).
[29] Reynel-Ávila H.E., Bonilla-Petriciolet A., Tapia-Picazo J.C., An artificial Neural Network-Based NRTL Model for Simulating Liquid-Liquid Equilibria of Systems Present in Biofuels Production, Fluid Phase Equilibria, 483: 153-164 (2019).
[30] Moghadam M., Asgharzadeh S., On the Application of Artificial Neural Network forModeling
Liquid-Liquid Equilibrium
, J. Mol. Liq., 220: 339-345 (2016)
[31] Xin-She Y., Suash D., “Cuckoo Search viaLe'vy Flights. Proc. Of World Congress on Nature & Biologically Inspired Computing”, India. IEEE Publications, USA, (2009).
[32] Payne R. B., Sorenson M. D., Klitz K., The Cuckoos, Oxford University Press, (2005)
[33] Google Sites, Cuckoo Search, Retrieved January 02, 2019, ttps://sites.google.com/site/cuckoosearch/
[34] Yang X.S., “Nature-Inspired Metaheuristic Algorithms”,Luniver Press, UK (2010).
[35] Yang X. S., “Firefly Algorithm, Levy Flights and Global Optimization, Research and Development
in Intelligent Systems XXVI”, pp. 209–218, Springer, London, UK (2010).
[36] Lukasik S., Zak S., Firefly Algorithm for Continuous Constrained Optimization Tasks, Computational Collective Intelligence. Semantic Web, Social Networks and Multiagent Systems, LNCS, 5796: 97-106 (2009).
[37] Blum C., Puchinger J., Raidl G.R, Roli A., Hybrid Metaheuristicsin Combinatorial Optimization: A Survey. Appl. Soft Comput. J.,11(6): 4135–4151 (2011)
[38] Marcio A.M., Fernando A.P.V.,  Cardozo-Filho. L.C., Marcelo L., Wagner L.P., Vladimir J.O., Thermophysical Properties of Biodiesel and Related Systems: (Liquid + Liquid) Equilibrium Data for Soybean Biodiesel, J. Chem. Thermodyn.,58: 83–94 (2013).
[39] Follegatti-Romero L.A., Mariana B.O., Fabio R.M.B., Eduardo A.C.B., João A.P.C., Antonio J.A.M., Liquid–Liquid Equilibria for Ternary Systems Containing Ethyl Esters, Ethanol and Glycerol at 323.15 and 353.15 K, Fuel, 94: 386–394 (2012).
[40] Francisca M.R.M., Filipe X. F., Nathan E. S., Santiago-Aguiar R.S., Hosiberto B. de S.,Liquid–Liquid Equilibrium for Ternary Mixtures of Biodiesel (Soybean or Sunflower) + Glycerol + Ethanol at Different Temperatures , J. Chem. Eng. Data, 56: 4061-4067 (2011).
[41] Merzougui A., Hasseine A., Laiadi D., Liquid-liquid Equilibria of {n-heptane + toluene +Aniline} ternarySystem: Experimental Data and Correlation, Fluid Phase Equilibria, 308: 142–147 (2011).
[42] Laiadi D., Hasseine A., Merzougui A.,  Homotopy Method to Predict Liquid-Liquid Equilibria for Ternary Mixtures of (Water + Carboxylic Acid+ Organic Solvent),Fluid Phase Equilibria,313: 114–120 (2011).
[43] Yang X.-S., Firefly Algorithms for Multimodal Optimization, SAGA: International Symposium on Stochastic Algorithms, 5792:169-178 (2009).
[44] Nakamura M., Hachiman K., Tohme H., Okazaki T., Tamaki S., Evolutionary Computing of Petri Net Structure for Cyclic Job Shop Scheduling, IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, E89-A: 3235-3243 (2006).
[45] Mohamed Aly W., Evaluation of Cuckoo Search Usage for Model Parameters Estimation, International Journal of Computer Applications, 78:1-6 (2013).
[46] Yang X. S., Deb S., Engineering Optimization by Cuckoo Search, Int. J. Math. Modelling Num. Optimisation, 1 (4): 330-343 (2010).