Thermodynamic Parameters Modeling of Viscous Flow Activation in Ethylene Glycol-Water Fluid Systems

Document Type: Research Article

Authors

1 Thermal Processes Laboratory (LPT), Research and Technology Center of Energy (CRTEn), Carthage University, Borj Cedria, B.P N°95 - 2050 Hammam-Lif, TUNISIA

2 Department of Physics, Koneru Lakshmaiah Education Foundation, Vaddeswaram, AP, INDIA

3 Department of Thermodynamics, Faculty of Pharmacy, University of Valencia, Burjassot (Valencia) 46100, SPAIN

4 Université de Tunis El Manar, Laboratoire de Biophysique et Technologies Médicales, LR13ES07, Institut Supérieur des Technologies Médicales de Tunis, 9 Avenue Dr. Zouhaier Essafi 1006 Tunis, TUNESIA

5 Department of Chemistry, University of Chittagong, Chittagong-4331, BANGLADESH

6 Department of Chemistry, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, SAUDI ARABIA

Abstract

Calculation of excess quantities of ethylene glycol + water binary fluid systems at seven absolute temperatures (293.15 to 353.15) K from experimentally determined values of density and shear viscosity were presented in previous work. The examination of related functions beside the quality of correlation from several equations on these experimental values has also been reported. Considering the quasi-equality between Arrhenius activation energy of viscosity Ea and the enthalpy of activation for viscous flow DH*, over with their individual's contribution separately we can define partial molar activation energy Ea1 and Ea2 for ethylene glycol with water respectively. Correlation between Arrhenius parameters also shows desirable Arrhenius temperature. Comparison to the vaporization temperature in the fluid vapor equilibrium and the limiting corresponding partial quantities permit us to predict the value of the boiling points of the pure constituents. New empirical equations to estimate the boiling point are developed.

Keywords

Main Subjects


[1] Hichri M., Das D., Messaâdi A., Bel Hadj Hmida E.S., Ouerfelli N., Khattech I., Viscosity Arrhenius Activation Energy and Derived Partial Molar Properties in of N,N-dimethylacetamide + 2–Ethoxyethanol Binary Mixtures at Temperatures from 298.15 K to 318.15 K, Phys. Chem. Liq., 51:721–730 (2013).
[2] Das D., Messaâdi A., Dhouibi N., Ouerfelli N., Hamzaoui A.H., Viscosity Arrhenius Activation Energy and DerivedPartial Molar Properties in N,N-dimethylacetamide + Water Binary Mixtures at Temperatures from 298.15 K to318.15 K, Phys. Chem. Liq., 51:677–685 (2013).
[3] Trabelsi Z., Dallel M., Salhi H., Das D., Al-Omair N.A.,Ouerfelli N., On the Viscosity Arrhenius Temperature for Methanol + N,N-dimethylformamide binary mixtures over the temperature range from 303.15 to 323.15 K, Phys. Chem. Liq., 53:529–552 (2015).
[4]Dallel M., Das D., Bel Hadj Hmida E.S., Al-Omair N.A., Al-Arfaj A.A., Ouerfelli N., Derived Partial Molar Properties Investigations of Viscosity Arrhenius Parameters in Formamide + N,N-dimethylacetamide Systems at Different Temperatures. Phys. Chem. Liq.,52:442–451 (2014).
[6]Dhouibi N., Dallel M., Das D., Bouaziz M., Ouerfelli N., Hamzaoui A.H. Notion of Viscosity Arrhenius Temperature for N,N-dimethylacetamide with N,N-Dimethylformamide Binary Mixtures and Its PureComponents, Phys. Chem. Liq., 53:275–292 (2015).
[7] Salhi H., Dallel M., Trabelsi Z., Alzamel N.O., Alkhaldi M.A., Ouerfelli N., Viscosity Arrhenius Activation Energy and Derived Partial Molar Properties in Methanol + N,N-dimethylacetamide Binary Mixtures the Tmperatures from 298.15 K to 318.15 K. Phys. Chem. Liq., 53:117–137 (2015).
[10] Al-Omair N.A., Das D., Snoussi L., Sinha B., Pradhan R., Acharjee K., Saoudi K., Ouerfelli N., A Partial Derivatives Approach for Estimation of the Viscosity Arrhenius Temperature in N,N-Dimethylformamide + 1,4-Dioxane Binary Fluid Mixtures at Temperatures from 298.15 K To 318.15 K,Phys. Chem. Liq., 54(5): 615–631 (2016).
[11] Salhi H., Al-Omair N.A., Al-Arfaj A.A., Alkhaldi M.A., Alzamel N.O., Alqahtani K.Y., Ouerfelli N.. Correlation Between Boiling Temperature and Viscosity Arrhenius Activation Energy in N,N-Dimethylformamide + 2-Propanol Mixtures at 303.15 to 323.15 K, Asian J. Chem., 28(9):1972–1984 (2016).
[12] Dallel M., Al-Zahrani A.A., Al-Shahrani H.M., Al-Enzi G.M., Snoussi L., Vrinceanu N., Al-Omair N.A., Ouerfelli N., Prediction of the Boiling Temperature of 1,2-Dimethoxyethane and Propylene Carbonate Through the Study of Viscosity Temperature Dependence of Corresponding Binary Liquid Mixtures, Phys. Chem. Liq., 55(4): 541–557 (2017).
[13] Dallel M., Al-Arfaj A.A., Al-Omair N.A., Alkhaldi M.A., Alzamel N.O., Al-Zahrani A.A.,Ouerfelli N.,
A Novel Approach of Partial Derivatives to Estimate the Boiling Temperature via the Viscosity Arrhenius Behavior in N,N-dimethylformamide + Ethanol Fluid Systems, Asian J. Chem., 29(9):2038–2050 (2017). 
[14] Yang C., Ma P., Jing F., Tang D., Excess Molar Volumes, Viscosities, and Heat Capacities for the Mixtures of Ethylene Glycol + Water from 273.15 K to 353.15 K, J. Chem. Eng. Data, 48:836–840 (2003).
[15] Han F., Zhang J., Chen G., Wei X., Density, Viscosity, and Excess Properties for Aqueous Poly(ethylene glycol) Solutions from (298.15 to 323.15) K, J. Chem. Eng. Data, 53(11):2598–2601 (2008).
[16] Cristancho D.M., Delgado D.R., Martínez F., Fakhree M.A.A., Jouyban A., Volumetric Properties of Glycerol + Water Mixtures at Several Temperaturesand Correlation with the Jouyban-Acree Model, Rev. Colomb. Cienc. Quím. Farm., 40(1): 92–115, (2011).
[17] Vural U.S., Muradoglu V., Vural S., Excess Molar Volumes, and Refractive Index of Binary Mixtures of Glycerol + Methanol and Glycerol + Water at 298.15 K and 303.15 K, Bull. Chem. Soc. Ethiopia., 25(1):111–118 (2011).
[18] Adam O.E-A.A., Al-Dujaili A.H., Awwad A.M., Volumetric Properties of Aqueous Solutions of Ethylene Glycols in the Temperature Range of 293.15–318.15 K, ISRN Phys. Chem., Volume 2014, Article ID 639813, 10 pages. 
[20] Nowak-Wózny D., Maczka T., The DC Conduction Mechanism of Ethylene Glycol Water SolutionsJ. Elect. Eng., 58(1): 55–57 (2007).
[21] Kumar R.M., Baskar P., Balamurugan K., Das S., Subramanian V., On the Perturbation of the H-Bonding Interaction in Ethylene Glycol Clusters upon Hydration, J. Phys. Chem. A, 116:4239−4247 (2012).
[22] Egorov G.I., Makarov D.M., Kolker A.M., Volumetric Properties of the Water–Ethylene Glycol Mixtures in the Temperature Range 278–333.15 K at Atmospheric Pressure, Russ. J. Gen. Chem., 80(8):1577–1585 (2010).
[23] Karimi A., Abdolahi Sadatlu M.A., Ashjaee M., Experimental Studies on the Viscosity of Fe Nanoparticles Dispersed in Ethylene Glycol and Water Mixture, Therm. Sci., 20(5):1661–1670 (2016).
[24] Zhang J., Xiao J., Liu Y., Wei X., Solubility of Carbonyl Sulfide in Aqueous Solutions of Ethylene Glycol at Temperatures from (308.15 K to 323.15) K, J. Chem. Eng. Data,55:5350–5353 (2010).
[25] Kulkarni D.P., Das D.K., Chukwu G.A., Temperature Dependent Rheological Property of Copper Oxide Nanoparticles Suspension (Nanofluid), J. Nanosci. Nanotechnol., 6(4):1–5 (2006).
[26] Popa C.V., Nguyen C.T., Gherasim I., New Specific Heat Data for Al2O3and Cuo Nanoparticles in Suspension In Water and Ethylene Glycol,Int. J. Therm. Sci., 111:108–115 (2017).
[27] Mahbubul I.M., Saidur R., Amalina M.A., Latest Developments on the Viscosity of Nanofluids, Int. J. Heat Mass Transf., 55:874–885 (2012).
[28] Dehnavi M., Pazuki G., Vossoughi M., “Application of a Modified Excess Gibbs Energy Model for Correlating and Predicting the Viscosity of Nano Fluids”, Proceedings of the 4th International Conference on Nanostructures (ICNS4) 12-14 March, Kish Island, I.R. Iran (2012).
[29] Kumar R.M., Baskar P., Balamurugan K., Das S., Subramanian V., Interaction of Ethylene Glycol–Water Clusters with Aromatic Surfaces,RSC Adv.,3:7798–7807 (2013).
[31] Snoussi L., Chouikh R., Ouerfelli N., Guizani A., Numerical Simulation of Heat Transfer Enhancement For Natural Convection in a Cubical Enclosure Filled With Al2o3/Water and Ag/Water Nanofluids, Phys. Chem. Liq.,54:703–716 (2016).
[32] SnoussiL., Ouerfelli N., Chesneau X., Chamkha A.J., Belgacem F.B.M,Guizani A., Heat Transfer on Natural Convection in a Nanofluid Filled U-Shaped Enclosures: Numerical Investigations, Heat Trans. Eng., 39:17-29 (2018).
[33] Snoussi L., Ouerfelli N., Sharma K.V., Vrinceanu N., Chamkha A.J., Guizani A., Numerical Simulation of Nanofluids for Improved Cooling Efficiency in a3D Copper Microchannel Heat Sink (MCHS), Phys. Chem. Liq.,57:1–21 (2018).
[34] Erfan-Niya H., Izadkhah M.-S., Moradkhani H., Rheological Behavior of Water–Ethylene Glycol Based Graphene Oxide Nanofluids, Iran. J. Chem. Chem. Eng.(IJCCE),37(5):177-187 (2018).
[35] Ali L.L., Abdel Halim S.A., Hassan Gomaa E.A.,  Sanad S.G., Theoretical Study of 1,4-Dioxane in Aqueous Solution and its Experimental Interaction with Nano CuSO4, Iran. J. Chem. Chem. Eng. (IJCCE), 38(3): 43-60(2019).
[38] Ouerfelli N., Iulian O., Besbes R., Barhoumi Z., Amdouni N., On the Validity of the Correlation-Belda Equation for Some Physical and Chemical Properties in 1,4-Dioxane + Water Mixtures, Phys. Chem. Liq., 50:54–68 (2012).
[40] Messaâdi A., Ouerfelli N., Das D., Hamda H., Hamzaoui A.H., Correspondence between Grunberg-Nissan, Arrhenius and Jouyban-Acree Parameters for Viscosity of Isobutyric Acid + Water Binary Mixtures from 302.15 K to 313.15 K, J. Solution Chem.,41:2186–2208 (2012).
[41] Desnoyers J.E., Perron G., Treatment of Excess Thermodynamic Quantities for Liquid Mixtures,
J. Solution Chem., 26:749–755 (1997).
[42] Redlich O., Kister A.T., Algebraic Representation of Thermodynamic Properties and the Classification of Solutions, Ind. Eng. Chem., 40:345–348 (1948).
[43] Jones G., Dole M., The Viscosity of Aqueous Solutions of Strong Electrolytes With Special Reference to Barium Chloride, J. Am. Chem. Soc., 51:2950–2964 (1929).
[44] Falkenhagen H. “Theorie der Elektrolyte.”, S. Hirzel Verlag, Leipzig (1971).
[46] Eyring H., John M.S., “Significant Liquid Structure”, John Wiley & Sons, Inc. New York, NY, USA, (1969).
[47] Ben Haj-Kacem R., Ouerfelli N., Herráez J.V., Guettari M., Hamda H., Dallel M., Contribution
to Modeling the Viscosity Arrhenius Type-Equation for some Solvents by Statistical Correlation Analysis
,Fluid Phase Equilibr., 383:11–20 (2014).
[48] Ben Haj-Kacem R., Ouerfelli N., Herráez J.V., Viscosity Arrhenius Parameters Correlation: Extension from Pure to Binary Liquid Mixtures, Phys. Chem. Liq., 53:776–784 (2015).
[49] Kacem R.B., Dallel M., Al-Omair N.A., Al-Arfaj A.A., Alzamel N.O., Ouerfelli N., Analysis of Correlation Between Viscosity Arrhenius Parameters: Extension to Ternary Liquid Mixtures,Mediterr. J. Chem., 6(5):208–215 (2017).
[50] Messaâdi A., Dhouibi N., Hamda H., Belgacem F.B.M., Adbelkader Y.H., Ouerfelli N., Hamzaoui A.H.,
A New Equation Correlating the Viscosity Arrhenius Temperature and the Activation Energy for Some Classical Solvents, J. Chem., Vol. 2015, Article ID 163262, 12 pages, (2015).
[51] Al-Arfaj A.A., Haj-Kacem R.B., Snoussi L., Vrinceanu N., Alkhaldi M.A., Alzamel N.O., Ouerfelli N., Correlation Analysis of the Viscosity Arrhenius-Type Equations Parameters for Some Binary Liquids Mixtures, Mediterr. J. Chem., 6(2):23–32 (2017).
[52] Alzamel N.O., Alakhras F., Al-Arfaj A.A., Alkhaldi M.A., Al-Omair N.A., Al-Abbad E., Wassel A.A., Ouerfelli N., On the Homographic Dependence of the Activation Energy and the Viscosity Arrhenius’ Temperature for Some Pure Fluids, Asian J. Chem., 30(09): 1937-1943 (2018). 
[53] Haj-Kacem R.B., Herráez J.V., Al-Arfaj A.A., Alkhaldi M.A., Alzamel N.O., Ouerfelli N., Correlation Analysis of the Power Law Parameters for Viscosity of Some Engineering Fluids, Phys. Chem. Liq., 55:766–774 (2017).
[54] Haj-Kacem R.B., Alzamel N.O., Al-Omair N.A., Alkhaldi M.A., Al-Arfaj A.A., Ouerfelli N., Sensitivity of Viscosity Arrhenius-Type Equation to Density of Liquids,Asian J. Chem., 28(11): 2407–2410 (2016).
[55] Kacem R.B.H., Alzamel N.O., Ouerfelli N., Sensitivity of Viscosity Arrhenius Parameters to Polarity of Liquids, Russ. J. Phys. Chem., A, 91(9):1654–1659 (2017).