Quantum Chemical Investigations on C14C10-Branched-Chain Glucoside Isomers Towards Understanding Self-Assembly

Document Type: Research Article

Authors

1 Department of Chemistry, College of Science, King Faisal University, Al-Hofuf, 31982 Al-Ahsa, SAUDI ARABIA

2 Center for Fundamental and Frontier Sciences in Nanostructure Self-Assembly, Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, MALAYSIA

Abstract

Density Functional Theory (DFT) calculations have been carried out using a Polarizable Continuum Model (PCM) in an attempt to investigate the electro-molecular properties of branched-chain glucoside (C14C10-D-glucoside) isomers. The results showed that αconfiguration of pyranoside form is thermodynamically the most stable, while the solution should contain much more β than α, according to the calculated Boltzmann distribution. Additionally, C14C10-β-D-xylopyranoside is studied for comparison with its glucoside analog in order to investigate the electronic effect of the hydroxymethyl (−CH2-OH) group at position 5-C. The topological parameters of intramolecular X-H∙∙∙Y hydrogen bonds were analyzed and the nature of these interactions were considered using the Atoms in Molecules (AIM) approach. Moreover, natural bond orbital analysis (NBO) was performed to define bond orders, charge, and lone pair electrons on each atom and effective non-bonding interactions. HOMO/LUMO analysis allowed the description of investigated isomers and led to a further understanding of their behaviors. The computational results, especially intramolecular hydrogen bonding and molecular electronic potential analysis are directly relevant to liquid crystal self-assembly and membrane biophysics.

Keywords

Main Subjects


[1]  Bahadur B., “Liquid Crystals - Applications and Uses”: (Volume 1), World Sci, (1990).

[2]  Cox T.M., Future Perspectives for Glycolipid Research in Medicine., Philos Trans R Soc Lond B Biol Sci, 358( 1433): 967–973 (2003).

[3]  Faivre V., Rosilio V., Interest of Glycolipids in Drug Delivery: from Physicochemical Properties to Drug Targeting, Expert Opin Drug Deliv, 7( 9): 1031–1048 (2010).

[4]  Inès M., Dhouha G., Glycolipid Biosurfactants: Potential Related Biomedical and Biotechnological Applications, Carbohydr. Res., 416: 59–69 (2015).

[5]  Kitamoto D., Isoda H., Nakahara T., Functions and Potential Applications of Glycolipid Biosurfactants--from Energy-Saving Materials to Gene Delivery Carriers, J. Biosci. Bioeng., 94( 3): 187–201 (2002).

[6]  Lourith N., Kanlayavattanakul M., Natural Surfactants Used in Cosmetics: Glycolipids, Int. J. Cosmet. Sci., 31(4): 255–261 (2009).

[7]  Vill V., Hashim R., Carbohydrate Liquid Crystals: Structure–Property Relationship of Thermotropic and Lyotropic Glycolipids,” Curr. Opin. Colloid. Interface. Sci., 7(5): 395–409 (2002).

[8]  Garidel P., Kaconis Y., Heinbockel L., Wulf M., Gerber S., Munk A., Vill V., Brandenburg K., Self-Organisation, Thermotropic and Lyotropic Properties of Glycolipids Related to their Biological Implications, Open Biochem J, 9: 49–72 (2015).

[9] Liew C.Y., Salim M., Zahid N.I., Hashim R., Biomass Derived Xylose Guerbet Surfactants: Thermotropic and Lyotropic Properties from Small-Angle X-Ray Scattering, RSC Advances:
An International Journal to Further the Chemical Sciences
, 5(120): 99125–99132 (2015).

[10] Manickam Achari V., Nguan H. S., Heidelberg T., Bryce R. A., Hashim R., Molecular Dynamics Study of Anhydrous Lamellar Structures of Synthetic Glycolipids: Effects of Chain Branching and Disaccharide Headgroup, J. Phys. Chem. B, 116(38): 11626–11634 (2012).

[11] Zahid N. I., Conn C.E., Brooks N.J., Ahmad N., Seddon J.M., Hashim R., Investigation of the Effect of Sugar Stereochemistry on Biologically Relevant Lyotropic Phases from Branched-Chain Synthetic Glycolipids by Small-Angle X-Ray Scattering, Langmuir, 29(51): 15794–15804 (2013).

[12] Bayach I., Achari V.M., Iskandar W.F.N.W., Sugimura A., Hashim R., Computational Insights Into octyl-D-xyloside Isomers Towards Understanding the Liquid Crystalline Structure: Physico-Chemical Features, Liq. Crys., 43(10): 1503–1513 (2016).

[14] Mosapour Kotena Z., Behjatmanesh-Ardakani R., Hashim R., Manickam Achari V., Hydrogen Bonds
in Galactopyranoside and Glucopyranoside: A Density Functional Theory Study
, J. Mol. Model, 19(2): 589–599 (2013).

[15] O’Lenick A.J., Guerbet Chemistry, J. Surfactants Deterg., 4(3): 311–315 (2001).

[16] Minamikawa H., Hato M., Reverse Micellar Cubic Phase in a Phytanyl-Chained Glucolipid/Water System, Langmuir, 14(16): 4503–4509 (1998).

[17] Barauskas J., Cervin C., Tiberg F., Johnsson M., Structure of Lyotropic Self-Assembled Lipid Nonlamellar Liquid Crystals and Their Nanoparticles in Mixtures of Phosphatidyl Choline and Alpha-Tocopherol (Vitamin E),” Phys. Chem. Chem. Phys., 10(43): 6483–6485 (2008).

[18] Brooks N.J., Hamid H.A.A., Hashim R., Heidelberg T., Seddon J.M., Conn Ch.E., Mirzadeh Husseini S.M., Ldayu Zahid N., Duali Hussen R.S., Thermotropic and Lyotropic Liquid Crystalline Phases of Guerbet Branched-Chain -D-Glucosides, Liq. Crys., 38(11–12): 1725–1734 (2011).

[19] Lee C., Yang W., Parr R.G., Development of the Colle-Salvetti Correlation-Energy Formula into
a Functional of the Electron Density
, Phys. Rev. B, 37(2): 785–789 (1988).

[20] Becke A. D., Density-Functional Thermochemistry. III. The Role of Exact Exchange, J. Chem. Phys., 98: 5648–5652 (1993).

[21] Biegler‐König F., Schönbohm J., Update of the AIM2000-Program for Atoms in Molecules,
J. Comput. Chem., 23(15): 1489–1494 (2002).

[22] Reed A.E., Curtiss L.A., Weinhold F., Intermolecular Interactions from a Natural Bond Orbital, Donor-Acceptor Viewpoint, Chem. Rev., 88: 899-926 (1988).

[23] Runge E., Gross E.K.U., Density-Functional Theory for Time-Dependent Systems, Phys. Rev. Lett., 52(12): 997–1000 (1984).

[24] Cossi M., Barone V., Cammi R., Tomasi J., Ab initio Study of Solvated Molecules: A New Implementation of the Polarizable Continuum Model, Chem Phys Lett, 255(4): 327–335 (1996).

[25] Frisch M.J. et al., “Gaussian 09,” Gaussian, Inc., Wallingford CT, (2009).

[26] Dennington R., Keith T., Millam J., “GaussView,” Semichem Inc, (2009).

[27] Humphrey W., Dalke A., Schulten K., VMD: Visual Molecular Fynamics, J Mol Graph, 14(1): 33-38 (1996).

[28] Angyal S.J., The Composition and Conformation of Sugars in Solution, Angew Makromol. Chem. Edition in English, 8(3): 157-166 (1969).

[29] Hashim R., Hashim H.H.A., Rodzi N.Z.M., Hussen R.S.D., Heidelberg T., Branched Chain Glycosides: Enhanced Diversity for Phase Behavior of Easily Accessible Synthetic Glycolipids, Thin Solid Films, 509(1): 27–35 (2006).

[30] Los J.M., Simpson L.B., Wiesner K., The Kinetics of Mutarotation of D-Glucose with Consideration of an Intermediate Free-aldehyde Form, J. Am. Chem. Soc., 78(8): 1564–1568 (1956).

[31] Bader R.F.W., Essén H., The Characterization of Atomic Interactions, Journal of Chemical Physics, 80: 1943–1960 (1984).

[32] Chattaraj P.K., Sarkar U., Roy D.R., Electrophilicity Index, Chem. Rev., 106(6): 2065–2091 (2006).

[34] Gatti C., Macchi P., “Modern Charge-Density Analysis”, Springer Science & Business Media, (2012).

[33] Hobza P., 2 Theoretical Studies of Hydrogen Bonding, Annu. Rep. Prog. Chem., Sect. C: Phys. Chem., 100: 3–27 (2004).

[35] Lee S.L., Debenedetti P.G., Errington J.R., A Computational Study of Hydration, Solution Structure, and Dynamics in Dilute Carbohydrate Solutions, J. Chem. Phys., 122(20): 204511 (2005).

[36] Zhao L., Ma K., Yang Z., Changes of Water Hydrogen Bond Network with Different ExternalitiesInt. J. Mol. Sci., 16(4): 8454–8489 (2015).

[37] Misran O., Timimi B.A., Heidelberg T., Sugimura A., Hashim R., Deuterium NMR Investigation of the Lyotropic Phases of Alkyl β-glycoside/D2O Systems, J. Phys. Chem. B., 117(24): 7335–7344 (2013).

[38] Manickam Achari V., Bryce R.A., Hashim R., Conformational Dynamics of Dry Lamellar Crystals of Sugar Based Lipids: an Atomistic Simulation Study, PLOS ONE, 9(6): e101110 (2014).

 [39] Mizuseki H., Belosludov R.V., Farajian A.A., Lgarashi N., Wang J.T., Chen H., Majumder Ch., Miura Sh., Kawazoe Y., Molecular Orbital Analysis of Frontier Orbitals for Molecular Electronics: a Case Study of Unimolecular Rectifier and Photovoltaic Cell, Sci. Technol. Adv. Mater., 4(4): 377-382 (2003).

[40] Bader R.F.W., “An Introduction to the Electronic Structure of Atoms and Molecules”, 1st ed., Toronto: Clarke, Irwin, (1970).

[41] Pearson R.G., The Electronic Chemical Potential And Chemical Hardness, J. Mol. Struct: Theochem, 255: 261–270 (1992).

[42] Rai D., Kulkarni A.D., Gejji S.P., Bartolotti L.J., Pathak R.K., Exploring Electric Field Induced Structural Evolution of Water Clusters, (H2O)N [N = 9–20]: Density Functional Approach, J. Chem. Phys., 138(4): 044304 (2013).

[43] Bader R.F.W., “Atoms in Molecules: A Quantum Theory”, Oxford, New York: Oxford University Press, (1994).

[44] Abou-Zied O.K., Zahid N.I., Khyasudeen M.F., Giera D.S., Thimm J.C., Hashim R., Detecting Local Heterogeneity and Ionization Ability In The Head Group Region of Different Lipidic Phases Using Modified Fluorescent Probes, Scientific Reports, 5: 8699 (2015).

[45] Ishitsuka R., Yamaji-Hasegawa A., Makino A., Hirabayashi Y., Kobayashi T., A Lipid-Specific Toxin Reveals Heterogeneity of Sphingomyelin-Containing Membranes, Biophys. J., 86(1): 296–307 (2004).

[46] Amar-Yuli I., Wachtel E., Shoshan E.B., Danino D., Aserin A., Garti N., Hexosome and Hexagonal Phases Mediated by Hydration and Polymeric Stabilizer, Langmuir, 23(7): 3637–3645 (2007).