Electronic and Optical Properties of Size-Controlled ZnO Nanoparticles Synthesized by a Facile Chemical Approach

Document Type: Research Article


1 Department of Applied Physics, Visvesvaraya National Institute of Technology, Nagpur, Maharashtra, INDIA

2 Department of Physics, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, INDIA


Facile low-temperature chemical route for the synthesis of ZnO nanoparticles is reported in this paper. Morphologically uniform and spherical shape with an average particle size of 8.8 nm and wurtzite phase with the crystalline structure of as-synthesized ZnO nanoparticles were confirmed by X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). The optical properties of ZnO nanoparticles were analyzed by UltraViolet Visible (UV-Vis) absorption and PhotoLuminescence (PL). The as-synthesized ZnO nanoparticles showed orange light-emitting properties when excited at 400 nm due to the well overlapping of electron and hole wave function across the compatible size of the particle of ZnO and the optical energy band gap of 3.5 eV due to quantum confinement. X-ray Photoelectron Spectroscopy (XPS) and Ultraviolet Photoelectron Spectroscopy (UPS) were used for the elemental, molecular and energetic information of ZnO nanoparticles. UPS analysis depicted the energy level position of ZnO nanoparticles whereas XPS spectra showed the presence of constitute elementals with the stoichiometric atomic % of Zn and O. The elemental composition was also confirmed by the EDS analysis. The significant Raman shifts for as-synthesized ZnO nanoparticles in the typical Raman-active modes of vibration assigned to the wurtzite crystal nanostructure of ZnO. 


Main Subjects

[1] Sutka A., Gross K.A., Spinel Ferrite Oxide Semiconductor Gas Sensors, Sensors and Actuators B: Chemical, 222: 95-105 (2016).

[2] Petti L., Munzenrieder N., Vogt C., Faber H., Buthe L., Cantarella G., Bottacchi F., Anthopoulos T.D., Troster G., Metal Oxide Semiconductor Thin-Film Transistors for Flexible Electronics, Applied Physics Reviews, 3(2): 021303 (2016).

[3] Yu X., Marks T.J., Facchetti A., Metal Oxides for Optoelectronic Applications, Nat Mater, 15(4): 383-96 (2016).

[4] Meyer J., Hamwi S., Kröger M., Kowalsky W., Riedl T., Kahn A., Transition Metal Oxides for Organic Electronics: Energetics, Device Physics and Applications, Adv. Mater., (2012).

        DOI: 10.1002/adma.201201630.

[5] Yang P., Sun P., Mai W., Electrochromic Energy Storage Devices, Materials Today, 19(7): 394-402 (2016).

[6] Lukatskaya M.R., Dunn B., Gogotsi Y., Multidimensional Materials and Device Architectures for Future Hybrid Energy StorageNat Commun, 7: 12647 (2016).

[7] Djurisic A.B., Leung Y.H., Ching Ng A.M., Strategies for Improving the Efficiency of Semiconductor Metal Oxide Photocatalysis, Materials Horizons, 1(4): 400-410 (2014).

[8] Khan M.M., Adil S.F., Al-Mayouf A., Metal Oxides as Photocatalysts, Journal of Saudi Chemical Society, 19(5): 462-464 (2015).

[9] Kundu S., Rao Gollu S., Sharma R., Halder N.N., Biswas P., Banerji P., Gupta D., GaAs Metal-Oxide-Semiconductor Based Nonvolatile Memory Devices Embedded with ZnO Quantum Dots, Journal of Applied Physics, 114(8): 084509 (2013).

[10] El-Desoky M.M., Ali M.A., Afifi G., Imam H., Annealing Effects on the Structural and Optical Properties of Growth ZnO Thin Films Fabricated by Pulsed Laser Deposition (PLD), Journal of Materials Science: Materials in Electronics, 25(11): 5071-5077 (2014).

[11] Tseng Z.L., Chiang C.H., Wu C.G., Surface Engineering of ZnO Thin Film for High Efficiency Planar Perovskite Solar Cells, Sci. Rep., 5: 13211 (2015).

[12] Apostoluk A., Zhu Y., Masenelli B., Delaunay J.-J., Sibinski M., Znajdek K., Focsa A., Kaliszewska I., Improvement of the Solar Cell Efficiency by the ZnO Nanoparticle Layer via the Down-Shifting Effect, Microelectronic Engineering, 127: 51-56 (2014).

[15] Zheng Z.Q., Yao J.D., Wang B., Yang G.W., Light-Controlling, Flexible and Transparent Ethanol Gas Sensor Based on ZnO Nanoparticles for Wearable Devices, Sci Rep., 5: 11070 (2015).

[16] Torres-Hernandez J.R., Ramirez-Morales E., Rojas-Blanco L., Pantoja-Enriquez J., Oskam G., Paraguay-Delgado F., Escobar-Morales B., Acosta-Alejandro M., Diaz-Flores L.L., Perez-Hernandez G., Structural, Optical and Photocatalytic Properties of ZnO Nanoparticles Modified with Cu, Materials Science in Semiconductor Processing, 37: 87-92 (2015).

[17] Hirschmann J., Faber H., Halik M., Concept of a Thin Film Memory Transistor Based on ZnO Nanoparticles Insulated by a Ligand Shell, Nanoscale, 4(2): 444-7 (2012).

[18] Hussain S., Liu T., Kashif M., Miao B., Lin L., Zeng W., Rashad M., Peng X., Pan F., Preparation of ZnO Nanodisks Using Hydrothermal Method and Sensing to Reductive Gases, Journal of Materials Science: Materials in Electronics, 25(11): 4725-4729 (2014).

[20] Comjani F.F., Willer U., Kontermann S., Schade W., Synthesis of ZnO Nanowalls and Nanocombs by Vapor–Liquid–Solid Method, Physica Status Solidi (a), 210(10): 2219-2223(2013).

[21] Schlur L., Carton A., Leveque P., Guillon D., Pourroy G., Optimization of a New ZnO Nanorods Hydrothermal Synthesis Method for Solid State Dye Sensitized Solar Cells Applications, The Journal of Physical Chemistry C, 117(6): 2993-3001 (2013).

[22] Li C., Lin Y., Li F., Zhu L., Sun D., Shen L., Chen Y., Ruan S., Hexagonal ZnO Nanorings: Synthesis, Formation Mechanism and Trimethylamine Sensing Properties, RSC Adv., 5(98): 80561-80567 (2015).

[24] Lee P., Saion E., Al-Hada N., Soltani N., A Simple Up-Scalable Thermal Treatment Method for Synthesis of ZnO Nanoparticles, Metals, 5(4): 2383-2392 (2015).

[26] Ismail R.A., Ali A.K., Ismail M.M., Hassoon K.I., Preparation and Characterization of Colloidal ZnO Nanoparticles Using Nanosecond Laser Ablation in Water, Applied Nanoscience, 1(1): 45-49 (2011).

[27] Mathur V., Rathore K.S., Sharma K., Evaluation of Energy Band Gap, Thermal Conductivity, Phase Transition Temperature and Elastic Response of PS/CdS Semiconducting Optical Nanocomposite, World Journal of Nano Science and Engineering, 03(03): 93-99 (2013).

[28] Zeng H., Duan G., Li Y., Yang S., Xu X., Cai W., Blue Luminescence of ZnO Nanoparticles Based on Non-Equilibrium Processes: Defect Origins and Emission Controls, Advanced Functional Materials, 20(4): 561-572 (2010).

[29] Morozov I.G., Belousova O.V., Ortega D., Mafina M.K., Kuznetcov M.V., Structural, Optical, XPS and Magnetic Properties of Zn Particles Capped by ZnO Nanoparticles, Journal of Alloys and Compounds, 633: 237-245 (2015).

[30] Zhang X., Qin J., Xue Y., Yu P., Zhang B., Wang L., Liu R., Effect of Aspect Ratio and Surface Defects on the Photocatalytic Activity of ZnO nanorodsSci Rep., 4: 4596 (2014).

[31] Mesaros A., Toloman D., Nasui M., Mos R.B., Petrisor T., Vasile B.S., Surdu V.A., Perhaita I., Biris A., Pana O., A Valence States Approach for Luminescence Enhancement by Low Dopant Concentration in Eu Doped ZnO Nanoparticles, Journal of Materials Science, 50(18): 6075-6086 (2015).

[32] Mosquera E., Rojas-Michea C., Morel M., Gracia F., Fuenzalida V., Zarate R.A., Zinc Oxide Nanoparticles with Incorporated Silver: Structural, Morphological, Optical and Vibrational Properties, Applied Surface Science, 347: 561-568 (2015).

[33] Saaedi A., Yousefi R., Jamali-Sheini F., Zak A.K., Cheraghizade M., Mahmoudian M.R., Baghchesara M.A., Dezaki A.S., XPS Studies and Photocurrent Applications of Alkali-Metals-Doped ZnO Nanoparticles under Visible Illumination Conditions, Physica E: Low-dimensional Systems and Nanostructures, 79: 113-118 (2016).

[35] Hadzic B., Romcevic N., Sibera D., Narkiewicz U., Kuryliszyn-Kudelska I., Dobrowolski W., Romcevic M., Laser Power Influence on Raman Spectra of ZnO(Co) Nanoparticles, Journal of Physics and Chemistry of Solids, 91: 80-85 (2016).

[37] Shrama S.K., Saurakhiya N., Barthwal S., Kumar R., Sharma A., Tuning of Structural, Optical, and Magnetic Properties of Ultrathin and Thin ZnO Nanowire Arrays for Nano Device Applications, Nanoscale Research Letters, 122(9): 1-17 (2014).

[38] Yang R.D., Tripathy S., Li Y., Sue H.-J., Photoluminescence and Micro-Raman Scattering in ZnO Nanoparticles: The Influence of Acetate Adsorption, Chemical Physics Letters, 411(1-3): 150-154 (2005).