Synthesis, Reactions and Antioxidant Activity of 5-(3', 4'-dihydroxy-tetrahydrofuran-2'-yl)-2-methyl-3-carbohydrazide

El Sadek, Mohamed Mohamed^{*+•}; Magd, Samir Ahmed; Hassan, Seham Yassen; Mostafa, Mohamed A.

Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21231, EGYPT

Yacouf, Galila A.

Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21231, EGYPT

ABSTRACT: In this manuscript, we describe the synthesis of the carbohydrazide 2. Acid-catalyzed condensation with several carbonyl compounds to afford the corresponding carbohydrazide derivatives 3-12. Their acetylation afforded the corresponding acetyl derivatives 13-22. Oxidative cyclization of O-acetyl derivatives 19-22 afforded the corresponding 1,3,4-oxadiazole derivatives 23-26. On the other hand, condensation of the dicarbonyl compound 27 with several aroylhydrazines to give the corresponding bisaroylhydrazones 28-32 cyclization of 28-31 afforded 1,3,4-oxadiazoles 33-36. The structures of the prepared compounds were confirmed by ¹HNMR and Mass Spectra. The mechanism of the formation of the products was discussed. Furthermore, the antioxidant activities of some of the prepared compounds were examined.

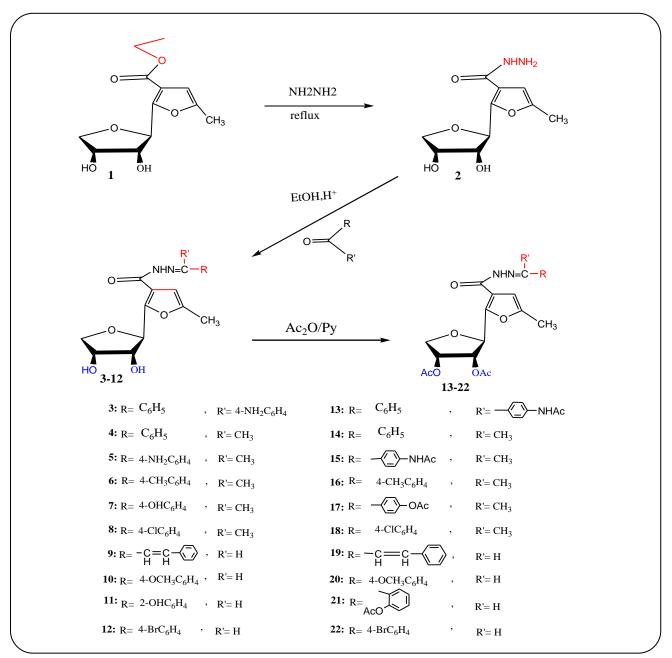
KEYWORDS: Carbohydrazides; Bisaroylhydrazones; 1, 3, 4-oxadiazoles.

INTRODUCTION

1,3,4-Oxadiazoles are important pharmacophore[1] which plays a major role in the pharmaceutical chemistry and broad range of important biological activities such as antioxidants[2,3-5], anti-bacterial[6], anti-viral[7], anti-fungal[8], anti-cancer[9], anti-tumor[10], anti-inflammatory[11] and anti-diabetic properties[12].

RESULTS AND DISCUSSION

Chemistry

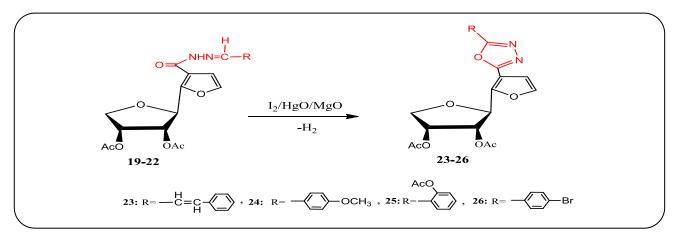

Treatment of compound **1** with hydrazine hydrate [13], afforded the hydrazide **2.** This latter was subjected to a condensation reaction with a series of various

Research Article

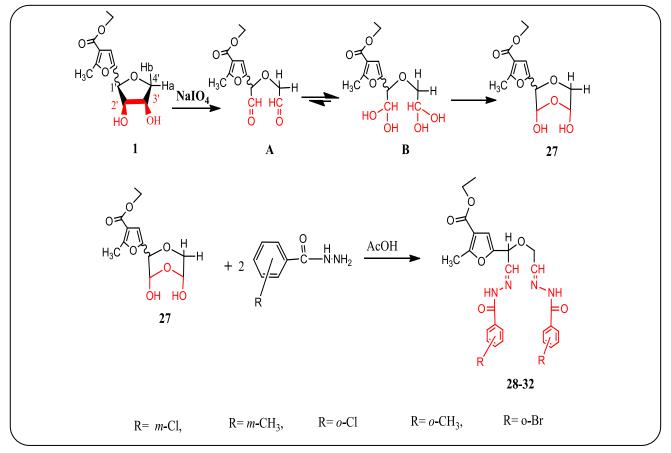
substituted R-CO-R' alkyl, aryl-carbonyl compounds to give the corresponding carbohydrazides derivatives **3-12**. ¹H-NMR spectra of compounds **3-8** (DMSO-d₆), showed (NH) resonance as the most downfield proton signal at rang δ (11.26-9.06) ppm as a singlet, followed by the aromatic protons as a multiple at δ (7.80-6.49), for (CH=N) proton displayed at δ (8.52-8.12) ppm as multiplet for compounds **9-12**. Acetylation of **3-12** yielded the corresponding acetyl compounds **13-22**.

Their infrared spectra showed the OAc group at γ (1754-1733) instead of sugar hydroxyl groups. Also, ¹H-NMR spectra showed the disappearance

^{*} To whom correspondence should be addressed. + E-mail: samirahmed10387@yahoo.com 1021-9986/2019/6/229-242 14/\$/6.04

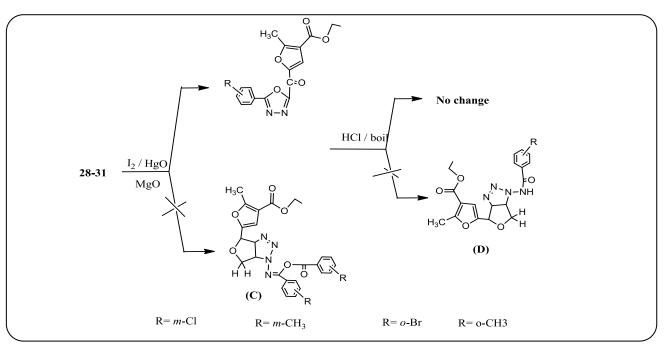

Scheme 1: Synthesis and acetylation of carbohydrazides.

of the OH protons in the sugar region and the appearance of, the *O*-acetyl protons at (2.12-2.02). The mass spectra of compounds **13** and **14** showed the base peaks at m/z 29 and 318 respectively (see Experimental and Scheme 1).


Oxidative cyclization of **19-22** with iodine, yellow mercuric oxide, magnesium oxide in dry ether afforded the corresponding 1,3,4-oxadiazole derivatives **23-26** (yields 20% -30%).¹H-NMR spectra showed the disappearance of both (NH) and (CH=N) protons signals.

The EI-MS of compounds 20 and 22 gave the base peaks at m/z 122 and 91/93 respectively, (see Experimental and Scheme 2).

Periodate oxidation [14] of the prepared anhydroderivative **1** gave corresponding dialdehyde **A** as monohydrate form **B**, to which is assigned the hemialdal structure [14-16] **27**, which on condensation with a number of aroylhydrazines afforded the corresponding bisaroylhydrazones **28-32**. ¹H-NMR spectra of


Scheme 2: Synthesis of 1,3,4-oxadiazole derivatives.

Scheme 3: Synthesis of bisaroylhydrazone derivatives 29-33.

compounds **28-32** (DMSO-d₆) showed the two (NH) protons at δ (11.55-11.82) ppm, due to the difference in the neighboring groups as two singlets, followed by the aromatic protons as multiplets at δ (7.17-7.87) ppm, two (CH=N) at δ (7.47-7.97), and the proton at position-4 in the furan ring as singlet at δ (6.73-6.79) ppm, the methine proton was shown as doublet at δ (4.89-5.17) ppm,

followed by multiple at δ (4.12-4.19) ppm for the protons of the two methylene groups (see Experimental and Scheme 3). Oxidative cyclization of bisaroylhydrazones **28-31** afforded the corresponding 1, 3, 4-oxadiazoles, instead of 1,2,3-triazoles. Vibrational spectroscopy of 1,3,4-oxadiazole derivatives (**33-36**), showed the disappearance of both(NH) and (CO-amide) groups.

Scheme 4: Synthesis of 1,3,4-oxadiazole derivatives 33-36.

These compounds (**33-36**) showed absorption bands at (1708-1715), (1592-1660) and (1467-1540) cm⁻¹ corresponding to (CO-ester), (C=O) and (C=N) groups respectively. ¹H-NMR spectra of compounds **33-36** (DMSO-d₆), showed the disappearance of signals corresponding to two (NH) and two (CH=N), methine and methylene protons, these oxidative cyclization products displayed the proton at postion-4 in the furan ring signal δ (7.69-8.17) ppm.

In addition, the structure of the oxidation products **33-36** was further supported through their boiling with hydrochloric acid, which didn't afford the corresponding amine derivatives D as expected from 1,2,3-triazole derivatives[17-20], (see Experimental part and Scheme 3 and 4). Moreover, the proposed mechanism[13] for formation of **33-36** may proceed via elimination of one aroylhydrazone part, (see Experimental and Scheme 5).

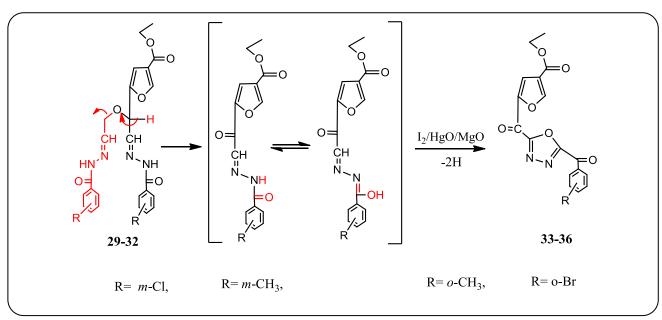
BIOLOGICLA ACTIVITY

Antioxdant Activity Screening (Using the DPPH Assay)

The DPPH (diphenyl picryl hydrazyl) assay method was based on the reduction of DPPH. The free radical DPPH with an odd electron gives a maximum absorption at 517 nm. When antioxidants are react with DPPH, giving DPPD-H and as consequence the absorbance decreased due to decolorization with respect to the number of electrons captured. More the decolorization

232

more is the reducing ability. The results expressed in terms of EC₅₀ (mg/mL). EC₅₀ values for each examined compound as well as standard preparations calculated according to the Shahwar et al's method⁸⁹. As showed in (Tables) and (Fig. 48-52). A lower EC₅₀ value is associated with a higher radical scavenging activity [21]. DPPH radical scavenging activities of the prepared compounds 9, 8, 6 and 31 in terms of EC_{50} were shown to be highest as (0.57, 0.58, 0.67 and 0.67 mg), respectively compared to EC_{50} of vitamin E (0.705) as standard. Meanwhile nearly the same activities were revealed in case of compounds 16, 29 and 12 (0.73, 0.76, 0.78 mg), respectively as compared with EC_{50} of vitamin E (0.705). Moderate activities were shown for compounds 19 and 33 (0.81 and 0.81 mg), respectively as compared to EC_{50} of vitamin E (0.705). Meanwhile lower activities were observed in case of compounds 22, 18 and 28 with EC_{50} as (0.84, 0.88, 0.95 mg) compared to standard, (Table 32).


EXPERIMENTAL SECTION

General Procedures.

Melting points were determined on kofler block and are uncorrected. IR spectra were recorded on Perkin Elemer. USA Spectrometer.¹HNMR was recorded on JEOL JNM ECA 500 MHZ using tetramethylsilane as an internal standard. GC-EI-MS were recorded with direct

Tuble 1. Absolvance and free radical searchiging activities of compounds (0,10,0).							
Conc. (mg/ml)	Compound no.6		Compound no.16		Compound no.8		
	Absorbance	% inhibition	Absorbance	% inhibition	Absorbance	% inhibition	
0.150	1.265	8.26	1.275	7.54	1.132	17.91	
0.300	1.138	18.08	1.190	13.70	1.012	26.61	
0.450	0.966	20.14	0.996	27.77	0.784	43.14	
0.600	0.716	48.07	0.826	40.99	0.653	52.64	
0.750	0.573	58.44	0.713	48.29	0.524	62.00	
0.900	0.416	69.83	0.502	63.59	0.398	71.13	
1	0.252	81.72	0.360	73.89	0.205	85.13	

Table 1: Absorbance and free radical scavenging activities of compounds (6,16,8).

Scheme 5: Proposed mechanism for formation of ethyl 2-methyl-5-(5-aryl-1,3,4-oxadiazole-2-carbonyl)furan-3-carboxylate.

introduction into a Shimadzu Qp-2010 instrument. Thin layer chromatography (TLC) was carried out on silica gel plates.

The ChemDraw-Ultra-12 has been used in the nomenclature of the prepared compounds.

Chemistry

5-(3', 4'-Dihydroxytetrahydrofuran-2'-yl)-2-methylfuran-3-carbohyrazide (2).

M.p 168-170°C, (lit.⁷⁵mp:185-187°C). IR(KBr) cm⁻¹; 3316, 3387(2NH), 1638(CO- amide); ¹H-NMR (DMSO); δ : 2.46 (s, 3H, CH₃ furan), 3.56-3.58 (d, 1H, H-4'a), 3.98-4.07 (m, 3H, H-4'b, H-3', H-2'), 4.33 (m, 2H, H-1', OH-2' exchangeable with D₂O), 4.39-4.41 (m, 1H, OH-3' exchangeable with D₂O), 4.98-5.08 (m, 2H, NH₂), 6.71 (s, 1H, CH furan), 9.24 (s, 1H, NH).

General Method for the Synthesis of Carbohydrazides 3-12

A mixture of 3-carbohydrazide **2** (2.37 mmol) and carbonyl compound (2.37 mmol) was heated under reflux in ethanol (10 mL) containing a few drops of acetic acid for 1 h. The products **3-12** that separated were filtered off and dried.

N'- ((4-aminophenyl) (phenyl)methylene) -5-(3,4dihydroxytetrahydrofuran-2-yl)-2-methylfuran-3carbohydrazide **(3).**

Yield (65%). It was recrystallized from ethanol. Rf:0.70 (chloroform–methanol, 5:1, ν/ν); mp: 206-208°C; IR (KBr) cm⁻¹; 3352(OH anhydro), 3109(NH₂ aniline), 2934(NH), 1661(CO amide), 1627(C=N); ¹H-NMR (DMSO); δ : 2.27-2.46 (m, 3H, CH₃ furan), 3.57-3.59 (d,

Conc. (mg/mL)	Compound no.18		Compound no.9		Compound no.19	
	Absorbance	% inhibition	Absorbance	% inhibition	Absorbance	% inhibition
0.150	1.245	9.71	1.269	7.97	1.217	11.74
0.300	1.122	16.46	0.942	31.68	1.188	13.85
0.450	1.013	26.54	0.816	40.82	0.986	28.49
0.600	0.948	31.94	0.645	53.22	0.898	34.88
0.750	0.864	37.34	0.463	66.42	0.718	47.93
0.900	0.704	48.94	0.317	74.83	0.624	54.74
1	0.518	62.43	0.141	89.77	0.495	64.10

Table 2: Absorbance and free radical scavenging activities of compounds (18,9,19).

Table 3: Absorbance and free radical scavenging activities of compounds (12,22,28).

Conc. (mg/ml)	Compound no.12		Compound no.22		Compound no.28	
	Absorbance	% inhibition	Absorbance	% inhibition	Absorbance	% inhibition
0.150	1.257	8.84	1.185	14.06	1.318	4.42
0.300	1.107	19.72	1.064	22.84	1.236	10.36
0.450	1.063	22.91	0.936	32.12	1.108	19.65
0.600	0.845	38.72	0.875	36.54	0.967	29.87
0.750	0.752	45.46	0.779	43.50	0.858	37.78
0.900	0.555	59.75	0.645	53.22	0.754	45.32
1	0.485	64.82	0.562	59.54	0.625	54.67

 Table 4: Absorbance and free radical scavenging activities of compounds (29,31,33).

Conc. (mg/ml)	Compound no.29		Compound no.31		Compound no.33	
	Absorbance	% inhibition	Absorbance	% inhibition	Absorbance	% inhibition
0.150	1.289	6.52	1.255	11.16	1.308	5.14
0.300	1.141	17.25	1.142	17.18	1.186	13.99
0.450	0.992	28.06	1.016	26.18	1.008	26.90
0.600	0.793	42.49	0.845	38.72	0.917	33.50
0.750	0.665	51.77	0.563	59.17	0.758	45.03
0.900	0.583	57.72	0.417	69.76	0.614	55.47
1	0.490	64.46	0.241	82.52	0.485	64.82

1H, H-4'a), 3.97-4.06 (m, 3H, H-4'b, H-3', H-2'), 4.36-4.52 (d, 1H, H-1'), 4.95-4.97 (d, 1H, OH-2' exchangeable with D₂O), 5.07-5.08 (d, OH-3' exchangeable with D₂O), 5.57-5.59 (s, 2H, NH2 exchangeable with D₂O), 6.23 (m,1H, CH furan). Aromatic protons : 6.49-6.70 (m, 2H, *m*-H aniline), 6.98-7.16 (m, 2H, *o*-H aniline), 7.26-7.37 (m, 2H, *m*-H phenyl), 7.47-7.49 (m, 1H , *p*-H phenyl), 7.51-7.55 (m, 2H, *o*-H phenyl), 9.06 (s, 1H, NH) ; Anal.calcd for $C_{23}H_{23}N_3O_5$: C,65.55;H,5.50;N,9.97; O,18.98.

5-(3,4-Dihydroxytetrahydrofuran-2-yl) -2- methyl-N'- (1phenylethylidene)furan-3-carbohydrazide (4)

Yield (48%). It was recrystallized from ethanol as colourless needles; R_f : 0.72 (benzene: methanol,10:5, v/v); mp: 80-82 °C; IR (KBr) cm⁻¹; 3355 (OH anhydro),

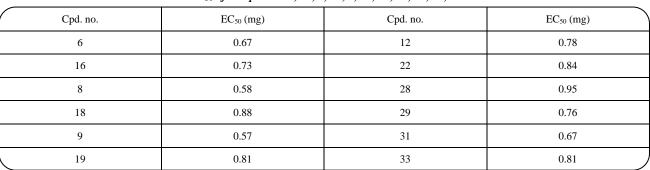


Table 5: EC₅₀ of compounds 6, 16, 8, 18, 9, 19, 12, 22, 28, 29, 31 and 33.

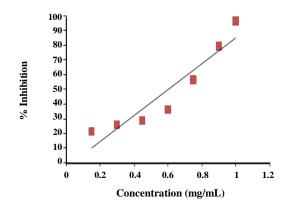


Fig. 1: % Inhibition activity of Vitamin E.

2956 (NH), 1673 (CO amide), 1624 (C=N); ¹H-NMR(DMSO); δ : 2.29 (s, 3H, CH₃ aceto), 2.47-2.49 (m, 3H, CH₃ furan), 3.60-3.62 (d, 1H, H-4'a), 4.00-4.02 (m, 1H, H-4'b), 4.10 (m, 2H, H-3', H-2'), 4.48-4.49 (d, 1H, H-1'), 5.00-5.01 (m, 1H, OH-3' exchangeable with D₂O), 5.09-5.11 (m, 1H, OH-2' exchange-able with D₂O), 6.89 (s, 1H, CH furan). Aromatic protons: 7.38-7.39 (d, 3H, *m*-H, 1H, *p*-H), 7.79 (d, 2H, *o*-H), 10.24 (s, 1H, NH); Anal.calcd for C₁₈H₂₀N₂O₅: C,62.78; H,5.85; N, 8.13 ; 0,23.23.

N'- (1-(4-Aminophenyl)ethylidene) -5- (3,4dihydroxytetrahydrofuran-2-yl)-2-methyl-furan-3carbohydrazide (5)

Yield (55%). It was recrystallized from ethanol as colourless needles; R_f : 0.70 (benzene: methanol, 10:3, v/v); mp: 110-112 °C; IR (KBr) cm⁻¹: 3593 (OH anhydro), 3424(NH₂ aniline), 3343(NH), 1633(CO amide), 1590(C=N); ¹H-NMR (DMSO); δ : 2.17 (s, 3H, CH₃ aceto), 2.47-2.49 (m, 3H, CH₃ furan), 3.13-3.14 (d, 1H, H-4'a), 3.59-3.61 (d, 1H, H-4'b), 3.99-4.02 (m, 1H, H-3'), 4.09-4.10 (d, 1H, H-2'), 4.46-4.47 (d, 1H, H-1'),

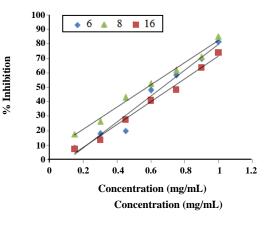


Fig. 1: % Inhibition activity of Vitamin E.

4.99 (m, 2H, OH-3' exchangeable with D_2O), 5.09-5.10(d, 1H, OH-2' exchangeable with D_2O), 5.46 (m, 2H, NH₂), 6.52(s, 1H, CH furan). Aromatic protons: 6.53-6.86 (m, 2H, *m*-H), 7.45-7.52 (m, 2H, *o*-H), 10.03 (m, 1H, NH); Anal.calcd for $C_{18}H_{21}N_3O_5$: C,60.16; H,5.89; N,11.69; O,22.26.

5- (3,4-Dihydroxytetrahydrofuran-2-yl) -2- methyl-N'- (1- (p-tolyl)ethylidene)furan-3-carbohydrazide (6)

Yield (70%). It was recrystallized from ethanol as colourless needles; R_f : 0.72 (benzene: methanol, 10:3, v/v) mp: 172-174 °C; IR (KBr) cm⁻¹: 3367 (OH anhydro), 3186 (NH), 1635 (CO amide), 1556 (C=N);¹H-NMR(DMSO); δ : 2.21-2.25 (m, 3H, CH₃ aceto), 2.29-2.31(m, 3H, CH₃ tolyl), 2.46 (s, 3H, CH₃ furan), 3.60-3.61(d, 1H, H-4'a), 3.99-4.02 (m, 1H, H-4'b), 4.09 (m, 2H, H-3', H-2'), 4.47-4.48 (d, 1H, H-1'), 4.97-5.01(m, 1H, OH-3' exchangeable with D₂O), 5.06-5.10 (m, 1H, OH-2' exchangeable with D₂O), 6.87(s, 1H, CH furan). Aromatic protons: 7.19-7.20 (m, 2H, *m*-H), 7.68-7.77 (m, 2H, *o*-H), 10.19 (s, 1H, NH) ;Anal.calcd for C₁₉H₂₂N₂O₅ : C,63.67; H, 6.19; N,7.82; O,22.32.

5- (3,4-Dihydroxytetrahydrofuran-2-yl) -N'- (1-(4hydroxyphenyl)ethylidene)-2-methylfuran-3carbohydrazide (7)

Yield (50%). It was recrystallized from ethanol as colourless needles; R_f : 0.71 (benzene: methanol,10:5,v/v) mp: 88-90 °C; IR (KBr) cm⁻¹:3424 (OH phenol), 3334 (OH anhydro), 3023 (NH), 1657 (CO- amide), 1587 (C=N); ¹H-NMR (DMSO); δ : 2.21 (s, 3H, CH₃ aceto), 2.43-2.51 (m, 3H, CH₃ furan), 3.59 (d, 1H, H-4'a), 3.61(m, 1H, H-4'b), 3.99-4.02 (m, 1H, H-3'), 4.09 (m, 1H, H-2', H-1'), 4.45-4.48 (m, 1H, OH-3' exchangeable with D₂O), 5.03 (m, 2H, OH-2', OH phenol exchangeable with D₂O), 6.75 (m, 1H, CH furan). Aromatic protons: 6.77-6.87 (m, 2H, *m*-H), 7.65-7.80 (m, 2H, *o*-H), 9.79 (s, 1H, NH); Anal.calcd for C₁₈H₂₀N₂O₆ : C,59.99; H,5.59; N,7.77; O,26.64.

N'-(1-(4-Chlorophenyl)ethylidene)-5-(3, 4-di hydroxytetrahydro furan-2-yl)-2-methyl furan-3-carbohydrazide (8)

Yield (50%). It was recrystallized from ethanol as colourless needles; $R_{\rm f}$: 0.72 (benzene: methanol,10: 5,v/v); mp: 176-178 °C;

IR (KBr) cm⁻¹: 3432 (OH anhydro), 3180 (NH), 1638 (CO amide), 1606 (C=N); ¹H-NMR(DMSO); δ : 2.28 (m, 3H, CH₃ aceto), 2.47-2.49 (s, 3H, CH₃ furan), 3.62 (d, IH, H-4'a), 4.09-4.10 (m, 3H, H-4'b, H-3', H-2'), 4.48-4.49 (d, 1H, H-1'), 5.00-5.10 (d, 2H, OH-3', OH-2' exchangeable with D₂O), 6.89 (s, 1H, CH furan). Aromatic protons: 7.44-7.46 (m, 2H, *m*-H), 7.80 (m, 2H, *o*-H), 10.27-10.60 (m, 1H, NH) ;Anal.calcd for C₁₈H₁₉N₂O₅: C,57.07; H,5.06 ; N,7.40; O,21.12.

5- (3,4-Dihydroxytetrahydrofuran-2-yl) -2- methyl -N'phenylally-lidene)furan-3-cabohydrazide (9)

Yield (77%). It was recrystallized from ethanol as colourless needles; R_f : 0.72 (benzene: methanol, 10:5,v/v); mp: 150-152 °C, (lit.⁷⁵ mp:162-163°C); IR (KBr) cm⁻¹: 3409 (OH anhydro), 3241 (NH), 1656 (CO amide), 1627 (C=N),1584 (C=C); ¹H-NMR (DMSO); δ : 2.47-2.50 (s, 3H, CH₃ furan), 3.62 (d, 1H, H-4'a), 4.01-4.10 (m, 3H, H-4'b, H-3', H-2'), 4.47-4.48 (d, 1H, H-1'), 5.02-5.12 (d, 2H, OH-3', OH-2' exchangeable with D₂O), 6.85(s, 1H, CH furan), 7.00 (m, 2H, CH₂ alkene), Aromatic protons: 7.34-7.36 (m, 1H, *p*-H , 2H, *m*-H), 7.58-7.59 (m, 2H, *o*-H), 8.12-8.13 (d, 1H ,CH=N), 11.26 (s, 1H, NH); Anal.calcd for C₁₉H₂₀N₂O₅ :C,64.04; H,5.66; N,7.86;

4-Dihydroxytetrahydrofuran-2-yl -N-(4-methoxybenzylidene)-2-methylfuran-3-carbohydrazide (10)

Yield (73%). It was recrystallized from ethanol as colourless needles; R_f : 0.74 (benzene: methanol,10:5, v/v); mp:216-218 °C; IR (KBr) cm⁻¹: 3464 (OH anhydro), 3303 (NH), 1654 (CO amide), 1605 (C=N);¹H-NMR (DMSO); δ : 2.45-2.51 (m, 3H, CH₃ furan), 3.60-3.62 (d, 1H, H-4'a), 3.77-3.79 (m, 3H, O-CH₃), 4.09-4.10 (m, 3H, H-4'b, H-3', H-2'), 4.48(d, 1H, H-1'), 5.02-5.12 (d, 2H, OH-3', OH-2' exchangeable with D₂O), 6.86 (s, 1H, CH furan). Aromatic protons: 6.97-6.99 (m, 2H, *m*-H), 7.61-7.62 (m, 2H, *o*-H), 8.28 (m, 1H, CH=N), 11.24 (s, 1H, NH); Anal.calcd for C₁₈H₂₀N₂O₆ : C,59.99; H,5.59; N,7.77; O,26.64.

5-(3, 4-Di hydroxytetrahydrofuran-2-yl)-N-(2hydroxyphenylidene)-2-methylfuran-3-carbohydrazide (11). Yield (70%)

It was recrystallized from ethanol as colourless needles; R_f :0.75 (benzene: methanol,10:5,v/v); mp:160-162°C; IR (KBr) cm⁻¹: 3501 (OH phenol), 3222 (OH anhydro), 3060 (NH), 1664 (CO- amide), 1616 (C=N); ¹H-NMR (DMSO); δ : 2.47-2.53 (m, 3H, CH₃ furan), 3.61-3.63 (d, 1H, H-4'a), 4.01-4.11 (m, 3H, H-4'b, H-3', H-2'), 4.48-4.49 (d, 1H, H-1'), 5.03-5.13 (d, 2H, OH-3', OH-2' exchangeable with D₂O), 6.87 (s, 1H, CH furan). Aromatic protons:6.88-6.90 (m, 2H, *m*-H), 7.26-7.48 (m, 1H, *o*-H, 1H, *p*-H), 8.52(m, 1H, CH=N), 11.25(s, 1H, OH-phenyl), 11.68 (s, 1H, NH); Anal.calcd for C₁₇H₁₈N₂O₆: C,58.96; H,5.24; N,8.09; O,27.72.

N'-(4-bromobenzylidene)-5-(3,4-dihydroxytetrahydrofuran-2-yl)-2-methylfuran-3-carbohydrazide (12)furan-3-

Yield (80%). It was recrystallized from ethanol as colourless needles; $R_f: 0.74$ (benzene: methanol,10:5,v/v) mp: 222-224 °C; IR (KBr) cm⁻¹: 3499 (OH anhydro), 3323 (NH), 1660 (CO amide), 1621 (C=N); ¹H-NMR (DMSO); δ : 2.47-2.51 (s, 3H, CH₃ furan), 3.60-3.62 (d, 1H, H-4'a), 4.09-4.10 (m, 3H, H-4'b, H-3', H-2'), 4.47-4.49 (d, 1H, H-1'), 5.02-5.12 (d, 2H, OH-3', OH-2' exchangeable with D₂O), 6.86 (s, 1H, CH furan). Aromatic protons : 7.62 (m, 2H, *m*-H, 2H, *o*-H), 8.31 (s, 1H, CH=N) ,11.44 (s, 1H, NH); Anal.calcd for C₁₇H₁₇BrN₂O₅ : C,49.89; H,4.19; Br,19.53 ; N,6.85 ; O,19.55.

Reaction of Compounds 3-12 with Acetic Anhydride

A solution of compounds **3-12** (1gm, 2.26 mmol) in mixture of pyridine (5 ml) and acetic anhydride (5 ml) was kept overnight at room temperature with occasional shaking. Then poured mixture onto crushed ice filtered off, washed with water and dried yield.

Dimethyl(2-(4(2-(4-aminophenyl)phenyl)methylene) hydrazinecarbonyl)-5-(methyl-furan-2-yl)tetrahydrofuran-3, 4-diyl diacetate (13).

Yield: 45%. It was recrystallized from ethanol as needles; R_f : 0.67, (benzene: methanol, 10:5, v/v), m.p:88-90 °C; IR (KBr) cm⁻¹: 3313 (NH), 1749 (OAc), 1666 (CO amide), 1599 (C=N); ¹H-NMR(DMSO); δ : 1.97-2.06 (m, 9H, 1*N*-Ac , 2*O*-Ac), 2.47 (m, 3H, CH₃ furan), 3.78-3.79 (m, 1H, H-4'a), 4.23(m, 1H, H-4'b), 4.80 (m, 1H, H-3'), 5.31-5.38 (m, 2H, H-2', H-1'), 6.46-6.54 (m, 1H, CH furan), Aromatic protons: 7.25-7.44 (m, 4H aniline), 7.51-7.59 (m, 2H, *m*-H phenyl, 1H, *p*-H phenyl), 7.75-7.76 (m, 2H, *o*-H phenyl), 9.40-9.56 (m, NH amide), 10.10-10.18 (m, 1H, NH acetate); Anal.calcd for C₂₇H₂₇N₃O₇: C,64.15; H,5.38; N,8.31; O,22.15.

2-(5-Methyl-4-(2-(1-phenylethylidene)hydrazinecarbonyl) tetrahydrofuran-3,4-diyl acetate (**14**)

yield: 50%. It was recrystallized from ethanol as needles; R_f : 0.64 (benzene: methanol, 10:5, v/v); m.p:106-108°C; IR (KBr) cm⁻¹: 3178 (NH), 1751 (OAc), 1651 (CO amide), 1609 (C=N); ¹H-NMR(CDCl₃); δ : 2.06-2.12 (m, 6H, 2OAc), 2.43 (m, 3H, CH₃ aceto), 2.61 (s, 3H, CH₃ furan), 3.89-3.97 (m, 1H, H-4'a), 4.36 (m, 1H, H-4'b), 4.87-4.89 (m, 1H, H-3'), 5.46-5.50 (m, 2H, H-2', H-1'), 6.93(s, 1H, CH furan). Aromatic protons: 7.45-7.48 (2H, *m*-H), 7.55-7.58 (m, 1H, *p*-H), 7.95-7.96 (m, 2H, *o*-H), 10.63 (s, 1H, NH);Anal.calcd for C₂₂H₂₄N₂O₇: C,61.67; H,5.65; N,6.54; O,26.14.

2-(4-(2-(1-(4-Aminophenyl)ethylidene)hydrazinecarbonyl) -5-methyl furan-2-yl)tetra-hydrofuran-3, 4 diyl acetate (15)

Yield: 50%. It was recrystallized from ethanol as needles R_f : 0.62, (benzene: methanol, 10:5, v/v); m.p:88-90°C; IR (KBr) cm⁻¹: 3115 (NH), 1733 (OAc), 1660 (CO amide), 1598(C=N);¹H-NMR (DMSO); δ : 2.03-2.06 (m, 9H, 1*N*-AC, 2*O*-Ac), 2.25(m, 3H, CH₃ aceto), 2.47-2.49 (m, 3H, CH₃ furan), 3.60-3.61(d, 1H, H-4'a), 4.09 (d, 1H, H-4'b), 4.35 (d, 1H, H-3'), 4.47-4.51 (m, 1H, H-2'), 5.22

Research Article

(m,1H,H-1'), 6.88-6.92 (m, 1H, CH furan) .Aromatic protons: 7.60 (m, 2H, *m*-H), 7.74 (m, 2H, *o*-H), 10.08(s, 1H, NH amide), 10.19-10.22 (m, 1H, NH acetate); Anal.calcd for $C_{24}H_{27}N_3O_8$: C,59.38; H,5.56; N,8.65; O,26.39.

2-(5-Methyl-4-(2-(1-(p-tolyl)ethylidene)hydrazinecarbonyl) furan-2-yl)tetrahydro-furan-3, 4-diyl diacetate (16)

Yield: 40%. It was recrystallized from ethanol as needles, R_f : 0.63, (benzene: methanol, 10:5, v/v); m.p:84-86 °C; IR (KBr) cm⁻¹: 3169(NH), 1754(OAc), 1650(CO amide), 1619(C=N); ¹H-NMR (CDCl₃); δ : 2.05-2.11 (s, 6H, 2OAc), 2.26 (s, 3H, CH₃ aceto), 2.37 (s, 3H, CH₃ tolyl), 2.60 (s, 3H, CH₃ furan), 3.94-3.96 (d, 1H, H-4'a), 4.36 (d, 1H, H-4'b), 4.90-4.91 (d, 1H, H-3'), 5.48-5.49 (m, 2H, H-2', H-1'), 7.08 (s, 1H, CH furan). Aromatic protons: 7.19-7.21 (m, 2H, *m*-H),7.61-7.73 (m, 2H, *o*-H), 8.91 (s, 1H, NH) Anal.calcd for C₂₃H₂₆N₂O₇ : C,62.43; H,5.95; N,6.33; O,25.31.

2-(4-(2-(1-(4-Acetoxy phenyl) ethylidene) hydrazine carbonyl)-5-methyl furan-2-yl) tetrahydrofuran-3, 4-diyl diacetate (17)

yield: 60%. It was recrystallized from ethanol as needles, R_f : 0.64, (benzene: methanol, 10:5, v/v); m.p:118-120°C;IR (KBr) cm⁻¹: 3178 (NH), 1751 (OAc), 1651 (CO amide), 1609 (C=N); ¹H-NMR (CDCl₃); δ : 2.02-2.12 (m, 6H, 2*O*-Ac), 2.32 (m, 3H, *O*-Ac phenyl, 3H, CH₃ aceto), 2.59 (s, 3H, CH₃ furan), 3.95-3.97 (d, 1H, H-4'a), 4.36-4.37 (m, 1H, H-4'b), 4.87-4.88 (m, 1H, H-3'), 5.46-5.47 (m, 2H, H-2', H-1'b), 6.91 (s, 1H, CH furan), Aromatic protons: 7.17-7.25 (m, 2H, *m*-H), 7.98-8.00 (m, 2H, *o*-H), 10.64(s, 1H, NH); Anal.calcd for C₂₄H₂₆N₂O₉: C,59.25; H,5.39; N,5.76; O,29.60.

2-(4-(2-(1-(4-Chlorophenyl)ethylidene)hydrazinecarbonyl) -5-methylfuran-2-yl)tetra-hydrofuran-3, 4-diyl diacetate (**18**)

Yield: 50%. It was recrystallized from ethanol as needles R_f : 0.67, (benzene: methanol, 10:5, v/v), m.p: 80-81 °C; IR (KBr) cm⁻¹: 3185 (NH), 1754 (OAc), 1646 (CO amide), 1606 (C=N); ¹H-NMR (CDCl₃); δ : 2.06-2.12 (m, 6H, 2OAc), 2.27-2.58 (m, 6H, CH₃ aceto, CH₃ furan), 3.95-3.96 (m,1H, H-4'a), 4.35-5.36 (m, 1H, H-4'b), 4.85-4.91 (m, 1H, H-3'), 5.48-5.51 (m, 2H, H-2', H-1'), 6.53-6.61 (m, 1H, CH furan), Aromatic protons: 7.35-7.43 (m, 2H, *m*-H), 7.65-7.89 (m, 2H, *o*-H), 10.60 (s, 1H, NH);

Anal.calcd for C₂₂H₂₃ClN₂O₇ : C,57.09; H,5.01; Cl,7.66; N,6.05; O,24.20.

2-(5-Methyl-4-(2-(3-phenylallaylidene)hydrazinecarbonyl) furan-2-yl)tetrahydro-furan-3, 4-diyl diacetate **(19)**

Yield: 50%. It was recrystallized from ethanol as needles R_f : 0.67, (benzene: methanol, 10:5, v/v), m.p: 80-81 °C; IR (KBr) cm⁻¹: 3185 (NH), 1754 (OAc), 1646 (CO amide), 1606 (C=N); ¹H-NMR (CDCl₃); δ : 2.06-2.12 (m, 6H, 2OAc), 2.27-2.58 (m, 6H, CH₃ aceto, CH₃ furan), 3.95-3.96 (m,1H, H-4'a), 4.35-5.36 (m, 1H, H-4'b), 4.85-4.91 (m, 1H, H-3'), 5.48-5.51 (m, 2H, H-2', H-1'), 6.53-6.61 (m, 1H, CH furan), Aromatic protons: 7.35-7.43 (m, 2H, *m*-H), 7.65-7.89 (m, 2H, *o*-H), 10.60 (s, 1H, NH); Anal.calcd for C₂₂H₂₃ClN₂O₇ : C,57.09; H,5.01; Cl,7.66; N,6.05; O,24.20.

2- (4-(2-(4-methoxybenzylidene)hydrazinecarbonyl)-5methylfuran-2-yl)tetrahydro-furan-3, 4-diyl diacetate (**20**)

Yield: 45%. It was recrystallized from ethanol as needles, R_f: 0.69, (benzene: methanol, 10:6, v/v), m.p:154-156 °C; IR (KBr) cm⁻¹: 3243(NH), 1749(OAc), 1646(CO amide), 1607(C=N); ¹H-NMR (DMSO); δ: 2.05-2.11(m,6H,2O-Ac), 2.58(m,3H, CH₃ furan), 3.81-3.88(m,3H, O-CH₃),3.95(m,1H,H-4'a),4.36(m,1H,H-4'b),4.83-4.88(m,1H,H-3'), 5.40-5.53 (m,2H,H-2',H-1'), 6.67 (m,1H,CH furan). Aromatic protons: 6.87-7.00(m,2H,*m*-H),7.56-7.84(m,2H,*o*-H), 8.21 (s.1H.CH=N). 9.50 (s,1H,NH); Anal.calcd for C₂₂H₂₄N₂O₈: C,59.45;H,5.44;N,6.30; O,28.80.

2-(4-(2-(2-acetoxybenzylidene) hydrazine carbonyl) -5methylfuran-2-yl) tetrahydro-furan-3, 4-diyl diacetate (21)

Yield: 58%. It was recrystallized from ethanol as needles, R_f : 0.69, (benzene: methanol, 10: 5, v/v), m.p:70-72 °C; IR (KBr) cm⁻¹: 3244(NH), 1748(OAc), 1653(CO amide), 1613(C=N); ¹H-NMR (DMSO); δ : 2.07-2.12 (m, 6H, 2*O*-Ac), 2.29-2.42 (m, 3H, *O*-Ac phenyl), 2.53-2.58 (m, 3H, CH₃ furan), 3.87-3.94 (m, 1H, H-4'a), 4.34 (m,1H, H-4'b), 4.88 (m, 1H, H-3'), 5.46-5.49 (m, 2H, H-2', H-1'), 6.86 (m, 1H, CH furan). Aromatic protons: 7.08-7.21 (m, 2H, *m*-H), 7.25-7.29 (m, 1H, *p*-H), 7.38-7.41 (m, 1H, *o*-H), 7.83-7.88 (m, 1H, CH=N), 9.69-10.10 (m, 1H, NH); Anal.calcd for C₂₃H₂₄N₂O₉: C, 58.47; H,5.12 ; N,5.93; O,30.48.

2- (4-(2-(4-Bromobenzylidene)hydrazinecarbonyl) -5methylfuran-2-yl)tetrahydro-furan-3, 4-diyl diacetate (22)

Yield: 50%. It was recrystallized from ethanol as needles R_f : 0.65, (benzene: methanol, 10:5, v/v), m.p:110°C; IR (KBr) cm⁻¹: 3209 (NH), 1748 (OAc), 1651 (CO amide), 1586 (C=N); ¹H-NMR (DMSO); δ : 2.07-2.11(m, 6H, 2*O*-Ac), 2.41-2.53 (m, 3H, CH₃ furan), 3.86-3.96 (m, 1H, H-4'a), 4.28-4.38 (m, 1H, H-4'b), 4.87-4.88 (m, 1H, H-3'), 5.50-5.51 (m, 2H, H-2', H-1'), 6.61(s,1H, CH furan). Aromatic protons: 7.49-7.53 (m, 2H, *m*-H), 6.67-7.75 (m, 2H, *o*-H), 7.80(s, 1H, CH=N), 9.96 (s, 1H, NH); Anal.calcd for C₂₁H₂₁BrN₂O₇ : C,51.13 ; H,4.29; Br,16.20; N,5.68; O,22.70.

Reactions of Compounds **19-22** with Yellow Mercuric Oxide

General Method: A solution of **10a–d** (4.5 mmol) in dry ether (50 mL) was stirred with yellow mercuric oxide (3.0 g), magnesium oxide (0.3 g), and iodine (2.5 g) at room temperature for 48 h under anhydrous condition. The reaction mixture was filtered off, and the filtrate washed with potassium iodide solution, sodium thiosulphate, and water, respectively, then dried over anhydrous sodium sulphate. On evaporation of the dried filtrate yellow syrup was obtained, which was crystallized from ethanol. An additional crop was obtained by extracting the inorganic residue withchloroform which upon concentration and dilution with ethanol yielded the same product.

2-(5-Methyl-4-(5-styryl-1,3,4-oxadiazol-2-yl)furan-2yl)tetrahydrofuran-3,4-diyl diacetate (23)

Over yield: 25%. It was recrystallized from ethanol as needles; R_f : 0.66 (benzene: methanol, 10:5, v/v); m.p: 166-168°C; IR (KBr) cm⁻¹: 1747 (OAc), 1640 (C=N); ¹H-NMR (DMSO); δ : 2.02 (s, 3H, *O*-Ac), 2.08 (s, 3H, *O*-Ac), 2.63 (s, 3H, CH₃ furan), 3.86-3.88 (m, 1H, H-4'a), 4.31-4.46 (m, 1H, H-4'b), 4.93 (m, 1H, H-3'), 5.29-5.47 (m, 2H, H-2', H-1'), 6.70-6.99 (m, 1H, CH₂ alkene), 7.14 (s, 1H, CH furan). Aromatic protons: 7.27-7.39 (m, 2H, *m*-H, 1H, *p*-H), 7.56-7.85 (m, 2H, *o*-H); Anal.calcd for C₂₃H₂₂N₂O₇: C,63.01 ; H,5.02; N,6.39; O,25.57.

2-(4-(5-(4-Methoxyphenyl)-1,3,4-oxadiazol-2-yl)-5methylfuran-2-yl)tetrahydro-furan-3,4-diyldiacetate (24)

Over yield: 28%. It was recrystallized from ethanol as needles; R_f : 0.64 (benzene: methanol, 10:5, v/v); m.p:

160-162°C; IR (KBr) cm⁻¹: 1746 (OAc), 1652 (C=N); ¹H-NMR (DMSO); δ : 2.00 (s, 3H, *O*-Ac), 2.07(s, 3H, *O*-Ac), 2.64 (s, 3H, CH₃ furan), 3.82 (s, 3H, O-CH₃), 3.85 (m, 1H, H-4'a), 4.28-4.30 (dd, 1H, H-4'b), 4.90-4.91(d, 1H, H-3'), 5.440-5.447 (m, 2H, H-2', H-1'), 7.04 (s, 1H, CH furan). Aromatic protons: 7.11-7.13 (m, 2H, *m*-H), 7.95-7.97 (m, 2H, *o*-H); Anal.calcd for C₂₂H₂₂N₂O₈ : C,59.73;H,5.01; N,6.33; O,28.93.

2-(4-(5-(2-Acetoxyphenyl)-1,3,4-oxadiazol-2-yl)-5methylfuran-2-yl)tetrahydrofuran-3,4-diyldiacetate (**25**)

Over yield: 20%. It was recrystallized from ethanol as needles; R_f : 0.69 (benzene: methanol, 10:5, v/v); m.p: 156-158°C; IR (KBr) cm⁻¹: 1744 (OAc), 1640 (C=N); ¹H-NMR (DMSO); δ : 2.01 (s,3H,*O*-Ac), 2.08 (s, 3H, *O*-Ac), 2.48-2.52 (m, 3H, O-Ac phenyl), 2.65 (s, 3H, CH₃ furan), 3.85-3.87 (m, 1H, H-4'a), 4.30 (m, 1H, H-4'b), 4.84-4.93 (m, 1H, H-3'), 5.41-5.46 (m, 2H, H-2', H-1'), 7.03 (m, 1H, CH furan). Aromatic protons: 7.36 -7.37 (m, 2H, *m*-H), 7.50-7.67 (m, 1H, *p*-H), 8.07(m, 1H, *o*-H); Anal.calcd for C₂₃H₂₂N₂O₉ : C,51.13 ; H,4.29; Br,16.20; N,5.68; O,22.70.

2-(4-(5-(4-Bromophenyl)-1,3,4-oxadiazol-2-yl)-5methylfuran-2-yl)tetrahydrofuran-3, 4-diyldiacetate (**26**)

Over yield: 30%. It was recrystallized from ethanol as needles; R_f : 0.64 (benzene: methanol, 10:5, v/v); m.p: 146-148°C; IR (KBr) cm⁻¹: 1748 (OAc), 1649 (C=N); ¹H-NMR (DMSO); δ : 1.99(s, 3H, OAc), 2.07(s, 3H, *O*-Ac), 2.65(s, 3H, CH₃ furan), 3.83-3.85 (dd, 1H, H-4'a), 4.27-4.30 (dd, 1H, H-4'b), 4.90-4.92 (d, 1H, H-3'), 5.43-5.44 (m, 2H, H-2', H-1'), 7.05 (s, 1H, CH furan), Aromatic protons: 7.78-7.80 (m, 2H, *m*-H), 7.95-7.96 (m, 2H, *o*-H) ; Anal.calcd for C₂₁H₁₉BrN₂O₇ : C,51.34; H,3.90; Br,16.26; N,5.70; O,22.80.

Synthesis of dialdehyde 27

A solution of compound 1 (5 gm , 19 mmol) in distilled water (30 ml) was treated with a solution of sodium metaperiodate (0.23 mol) in distilled water (20 ml) dropwise with continous stirring for 3 hours. The dialdehyde that separated out was filtered off, washed with little water, and dried, yield: 50%, R_f : 0.40 (chloroform: methanol, 10:6, v/v). It was recrystallized from ethanol as colourless needles; m.p:142-144°C, (lit.⁷⁵mp:111-113°C); IR(KBr) cm⁻¹; 1712(CO ester), 3429(OH); ¹H-NMR (DMSO); δ : 1.20-1.2 3(t, 3H, CH₃ ester), 3.26-3.28 (m, CH₃ furan), 4.14-4.17 (q, 2H, CH₂ ester), 4.47(s, 1H, H-3), 5.11-5.12 (d, 1H, H-2a), 5.13(d, 1H, H-2b), 6.53-6.55 (s, 1H, CH furan), 6.61(1H, H-1), 6.62(1H, H-4); Anal.calcd for C₁₂H₁₂O₄ : C,57.14; H,4.80; O,38.06.

Reactions of 27 with a Number of Aroylhydrazines.

A solution of compound **27** (2.0g, 7.3 mmol) in ethanol (15 ml) containing (0.1 ml) acetic acid was treated with aroylhydrazine (2.50 g, 10.37 mmol) in ethanol (10 ml). The reaction mixture was refluxed on water bath for 15 minutes, the bisaroyl hydrazine derivative that separated out was filtered off, wash little ethanol, and dried.

Ethyl5-[2-(2-(m-chlorobenzoyl)hydrazono)-1-(2-(2-(m-chlorobenzoyl)hydrazono) ethoxy)ethyl]-2-methyl furan-3-carboxylate (28)

Yield: 65%. It was recrystallized from ethanolchloroform as colourless needles; R_f : 0.54 (chloroform: methanol, 10:5, v/v); m.p: 202-204°C; IR (KBr) cm⁻¹; 3275, 3211 (2NH), 1713 (CO ester), 1661 (CO amide), 1598(C=N); ¹H-NMR(DMSO); δ : 1.21-1.24 (t, 3H, CH₃ ester), 2.47- 2.53 (s, 3H, CH₃ furan), 4.16-4.17 (m, 2H, H_{1a}, H_{2b}), 4.18-4.20 (q, 2H, CH₂ ester), 5.16-5.17 (d, 1H, CH₁), 6.74 (s, 1H, CH furan), Aromatic protons: 7.50-7.53 (m, 2H, *m*-H), 7.62(m, 2H, *p*-H), 7.71-7.84 (m, 4H, *o*-H), 7.88-7.91 (m, CH=N₂, CH=N₂), 11.74(s,1H,H₃), 11.82 (s, 1H, H₃); Anal.calcd for C₂₆H₂₂Cl₂N₄O₆ : C,56.03; H,3.98; Cl,12.72; N,10.05; O,17.22.

Ethyl5-[2(2-(m-methylbenzoyl)hydrazono)-1(2-(2-(m-methylbenzoyl)hydrazono) ethoxy)ethyl]-2-methyl furan-3-carboxylate (29)

Yield: 66%. It was recrystallized from ethanolchloroform as colourless needles; R_f : 0.56 (chloroform: methanol, 10:5, v/v); m.p: 186-188°C; IR (KBr) cm⁻¹; 3181, 3051 (2NH), 1717 (CO ester), 1659 (CO amide), 1606(C=N); ¹H-NMR(DMSO); δ : 1.21-1.24(t, 3H, CH₃ ester), 2.33 (s, 6H, 2CH₃ tolyl), 2.47-2.53 (s, 3H, CH₃ furan), 4.16-4.18 (m, 2H, H_{1a}, H_{1b}), 4.19 (m, 2H, CH₂ ester), 5.14 (d, 1H, CH₁), 6.73 (1H, CH furan), Aromatic protons: 7.36 (m, 2H, *m*-H, 2H, *p*-H), 7.60-7.65 (m, 4H, *o*-H), 7.72 (m, 1H, CH=N₂), 7.91-7.92 (m, 1H, CH=N₂), 11.62(s, 1H, H₃), 11.72(s, 1H, H₃); Anal.calcd for C₂₈H₂₈N₄O₆: C,65.11; H,4.46; N,10.85; O,18.58.

Ethyl5-[2-(2-(o-bromobenzoyl)hydrazono)-1-(2-(2-(obromobenzoyl)hydrazono) ethoxy)ethyl]-2-methyl furan-3-carboxlate (**30**)

Yield: 63%. It was recrystallized from ethanolchloroform as colourless needles; R_f : 0.50 (chloroform: methanol, 10:5, v/v); m.p: 190-192°C; IR (KBr) cm⁻¹; 3179, 3049 (2NH), 1714 (CO ester), 1669 (CO amide), 1590 (C=N); ¹H-NMR(DMSO); δ : 1.23-1.26 (t, 3H, CH₃ ester), 2.53 (m, 3H, CH₃ furan), 4.12-4.19 (m, 2H, H_{1a}, H_{1b}), 4.20 (m, 2H, CH₂ ester), 4.89-5.16 (m, 1H, CH₁), 6.75 (m, 1H, CH furan), Aromatic protons: 7.23-7.47 (m, 4H, *m*-H, 2H, *p*-H), 7.50-7.61 (m, 2H, *o*-H), 7.63-7.73 (m, 2H, CH=N₂, CH=N₂), 11.70 (m, 1H, H₃), 11.81 (m, 1H, H₃) ;Anal. calcd for C₂₆H₂₂Br₂N₄O₆ : C,48.32; H,4.95; Br,24.73; N,8.67; O,14.85.

Ethyl5-[2(2-(o-methylbenzoyl)hydrazono)-1(2-(2-(omethylbenzoyl)hydrazono)ethoxy)ethyl]-2-methyl furan-3-carboxylate (**31**)

Yield: 60%. It was recrystallized from ethanolchloroform as colourless needles; R_f : 0.57 (chloroform: methanol, 10:5, v/v); m.p: 180-182°C; IR (KBr) cm⁻¹; 3197, 3052 (2NH), 1717 (CO ester), 1657 (CO- amide), 1576 (C=N.); ¹H-NMR(DMSO); δ : 1.23-1.26 (t, 3H, CH₃ ester), 2.32-2.47 (m, 6H, CH₃ tolyl), 2.54 (m, 3H, CH₃ furan), 4.14-4.19 (m, 2H, H_{1a}, H_{1b}), 4.20-4.22 (q, 2H, CH₂ ester), 5.13 (d, 1H, CH₁⁻), 6.74 (s, 1H, CH furan), Aromatic protons: 7.17-7.27 (m, 4H, *m*-H, 2H, *p*-H), 7.34-7.41 (m, 4H, *o*-H), 7.47-7.57 (m, 1H, CH=N₂), 7.75-7.77(m, 1H, CH=N₂⁻), 11.55 (m, 1H, H₃), 11.66 (m,1H, H₃);Anal.calcd for C₂₈H₂₈N₄O₆ ; C,65.11; H,4.46 ; N,10.85 ; O,18.58.

Ethyl5-(2-(2-(o-chlorobenzoyl)hydrazono)-1-(2-(2-(o-chlorobenzoyl)hydrazono) ethoxy)ethyl)-2-methylfuran-3-carboxylate (**32**)

Yield: 70%. It was recrystallized from ethanolchloroform as colourless needles; R_f : 0.55 (chloroform: methanol, 10:5, v/v); m.p: 184-186°C; IR (KBr) cm⁻¹; 3065, 3199 (2NH), 1710 (CO ester), 1657 (CO amide), 1593(C=N); ¹H-NMR (DMSO); δ :1.22-1.24 (t, 3H, CH₃ ester), 2.47-2.53(s, 3H, CH₃ furan), 4.16-4.17 (m, 2H, H_{1a}, H_{1b}), 4.19 (q, 2H, CH₂ ester), 5.15-5.16 (d, 1H, CH₁), 6.74(s, 1H, CH furan), Aromatic protons: 7.56-7.57 (m, 4H, *m*-H), 7.72-7.87 (m, 2H, *p*-H, m, 2H, *o*-H), 7.91 (m, 1H, CH=N₂), 7.92 (m, 1H, CH=N₂), 11.73 (s, 1H, H₃), 11.82 (s, 1H, H₃); Anal.calcd for $C_{26}H_{22}Cl_2N_4O_6$: C,56.03; H,3.98 ; Cl,12.72; N,10.05; O,17.72.

Oxidative cyclization of the bisaroylhydrazones **28-31** (see the method number 3.2.4)

Ethyl-2-methyl-5-(5-(m-chlorophenyl)-1,3,4-oxadiazole-2-carbonyl)furan-3-carboxylate **(33)**

Over yield: 11%. It was recrystallized from ethanol as needles; R_f : 0.67 (benzene: methanol, 10:5, v/v); m.p: 76-78°C; IR (KBr) cm⁻¹; 1708 (CO ester), 1660 (C=O), 1592 (C=N); ¹H-NMR (DMSO); δ : 1.28-1.31 (t, 3H, CH₃ ester), 2.47-2.69(s, 3H, CH₃ furan), 4.26 (q, 2H, CH₂ ester), Aromatic protons: 7.66-7.76 (m, 1H, *m*-H, 1H, *p*-H), 8.03 (m, 2H ,*o*-H), 8.17 (s, 1H, CH furan); Anal.calcd for C₁₇H₁₃ClN₂O₅ : C,56.60; H,3.63; Cl,9.83 ; N,7.77; O,22.18.

Ethyl 2-*methyl* -5- (5-(*m*-tolyl) -1,3,4- oxadiazole-2carbonyl)furan-3-carboxylate (**34**)

Over yield: 12%. It was recrystallized from ethanol as needles; R_f : 0.66 (benzene: methanol, 10:5, v/v); m.p: 73-75°C; IR (KBr) cm⁻¹; 1715(CO ester), 1654(C=O), 1589(C=N); ¹H-NMR (DMSO); δ : 1.20-1.30 (m, 3H, CH₃ ester), 2.35-2.49 (m, 6H, CH₃tolyl, CH₃ furan), 3.46-4.26 (m, 2H, CH₂ ester), Aromatic protons: 7.39-7.72 (5H, 1H, *m*-H, 1H, *p*-H , 2H, *o*-H , 1H, CH furan); Anal.calcd for C₁₈H₁₆N₂O₅ : C,63.52; H,4.74; N,8.23; O,23.51.

Ethyl-2-methyl-5-(5-(o-bromophenyl)-1,3,4-oxadiazole-2carbonyl)furan-3-carboxylate (**35**)

Over yield: 18%. It was recrystallized from ethanol as needles; R_f : 0.66 (benzene: methanol, 10:5, v/v); m.p: 73-75°C; IR (KBr) cm⁻¹; 1720 (CO ester), 1592 (C=O), 1467 (C=N); ¹H-NMR (DMSO); δ : 1.07-1.24 (m, 3H, CH₃ ester), 2.47- 2.61 (m,3H, CH₃ furan), 4.10-4.22 (m, 2H, CH₂ ester), Aromatic protons: 7.42-7.44 (m, 3H, *m*-H, *p*-H), 7.67 (m, 1H, *o*-H), 7.69 (m, 1H, CH furan); Anal.calcd for C₁₇H₁₃BrN₂O₅ : C,50.39; H,3.23 ; Br,19.72; N,6.91 ; O,19.74.

Ethyl 2-*methyl*-5(5-(o-toluoyl)-1,3,4-oxadiazole-2carbonyl)furan-3-carboxylate (**36**)

Over yield: 16%. It was recrystallized from ethanol as needles; R_f : 0.68 (benzene: methanol, 10:5, v/v); m.p: 140-142°C; IR (KBr) cm⁻¹; 1715 (CO ester), 1602 (C=O),

1540 (C=N); ¹H-NMR (CDCl₃); δ: 1.34-1.36(m, 3H, CH₃ ester), 2.64(m, 6H, CH₃ furan, CH₃ tolyl), 4.32-4.33 (m, 2H, CH₂ ester), Aromatic protons: 7.25-7.29 (m, 2H, *m*-H), 7.43-7.46 (m,1H, *p*-H), 7.53(m, 1H, *o*-H), 8.04-8.06 (m,1H, CH furan); Anal.calcd for C₁₈H₁₆N₂O₅ : C,63.52; H,4.74; N,8.23; O,23.51.

Acknowledgments

We would like to thank the chemistry department, Faculty of Science, Alexandria University, Egypt for providing facilities during this research, thanks also to my colleagues for their help and support.

Received : May 31, 2018 ; Accepted : Sep. 15, 2018

REFERENCES

- Khalilullah H., Ahsan, J.M., Hedaitullah M., Khan S.; Ahmed B., <u>1</u>, <u>3</u>, <u>4-oxadiazole: a Biologically Active</u> <u>Scaffold</u>, *Mini Reviews in Medicinal Chemistry.*, <u>12</u>: 789-801 (2012).
- [2] Shakir R.M., Ariffin A., Abdulla M.A., <u>Synthesis of New 2, 5-di-substituted 1, 3, 4-oxadiazoles Bearing 2, 6-di-tert-butylphenol Moieties and Evaluation of their Antioxidant Activity</u>, *Molecules.*, **19**: 3436-3449 (2014).
- [3] Alp A.S., Kilcigil, G.; Özdamar E.D., ÇOBAN T., Eke B., <u>Synthesis and Evaluation of Antioxidant</u> <u>Activities of Novel 1, 3, 4-oxadiazole and Imine</u> <u>Containing 1H Benzimid-Azoles</u>, *Turkish Journal of Chemistry.*, **39**: 42-53 (2015).
- [4] Suresh D.B., Jamatsing D.R., Pravin S.K., Ratnamala S.B., Synthesis, Characterization and Antioxidant Activity of Carvacrol Containing Novel Thiadiazole and Oxadiazole Moieties, Mod. Chem. Appl., 4: 1-4 (2016).
- [5] Patrao P., Khader A.M.A., Kalluraya B., Synthesis of New 5-Naphthyl Substituted 1, 3, 4-Oxadiazole Derivatives and their Antioxidant Activity, *Der. Pharm Chem.*, 5: 24-32(2013).
- [6] Grewal A.S., Redhu S., <u>Synthesis, Antibacterial and Antifungal Activity of 2, 5-Disubstituted-1, 3, 4-oxadiazole Derivatives</u>, *Pharm. Tech. Res.*, 6: 2015-2021 (2014).
- [7] Selvakumar B., Vaidyanathan S.P., Madhuri S., Elango K.P., <u>Synthesis and Antiviral Activity of</u> <u>Sulfonohydrazide and 1, 3, 4-oxadiazole Derivatives</u> <u>of 6, 6-dimethyl-9-oxo-4, 5, 6, 7, 8, 9-</u> <u>Hexahydropyrazolo [5, 1-b] Quinazoline</u>, *Journal of Chemical Research*, **41**: 221-224 (2017).

- [8] Parikh P.K., Marvaniya H.M., Sen D.J., Synthesis and Biological Evaluation of 1, 3, 4-oxadiazole Derivatives as Potential Antibacterial and Antifungal Agents, *Int. J. Drug Dev. & Res.*, 3: 248-255 (2011).
- [9] Özdemir A., Sever B., Altıntop M.D., Temel H.E., Atlı Ö., Baysal M., Demirci F., <u>Synthesis and Evaluation of New Oxadiazole</u>, <u>Thiadiazole</u>, and <u>Triazole Derivatives as Potential Anticancer Agents</u> <u>Targeting MMP-9</u>, *Molecules*, **22**: 1109- (2017).
- [10] Bondock S., Adel S., Etman H.A., Badria F.A., <u>Synthesis and Antitumor Evaluation of Some</u> <u>New 1, 3, 4-oxadiazole-based Heterocycles</u>, *European Journal of Medicinal Chemistry*, **48**: 192-199 (2012).
- [11] Singh A.K., Lohani M., Parthsarthy R., <u>Synthesis</u>, <u>Characterization and Anti-Inflammatory Activity of</u> <u>Some 1, 3,4 -Oxadiazole Derivatives</u>, *IJPR*, **12**: 319-323 (2013).
- [12] Shyma P.C., Kalluraya B., SK P., AM V., Synthesis, Characterization, Antidiabetic and Antioxidant Activity of 1, 3, 4-oxadiazole Derivatives Bearing 6-Methyl Pyridine Moiety, *Der. Pharm. Chemica*, 7: 137-45(2015).
- [13] El-Sadek M.M., Hassan S.Y., El-Dayem N.S., Yacout G.A., <u>5-(5-Aryl-1, 3, 4-oxadiazole-2carbonyl) Furan-3-carboxylate and New Cyclic C-Glycoside Analogues from Carbohydrate Precursors with MAO-B, Antimicrobial and Antifungal Activities, *Molecules*, **17**: 7010-7027 (2012).</u>
- [14] A.Gómez Sánchez and A. Rodríguez Roldán, *Carbohydr.Res.*, **22**: 53-62 (1972).
- [15] Guthrie R.D., Honeyman J., Chem. and Industry, I: 557-562 (1958).
- [16] John W.Rowen, Florence H. Forziati and Richard E.Reeves, J. Chem. Soc., 20: 1697 (1951).
- [17] Alexandrou, N.E. Reassignment of Structures of the Dihydro-v-Tetrazines. II: Mechanism of Oxidation of Diacylhydrazones, *Tetrahedron*, **22**: 1309–1316 (1966).
- [18] El Khadem H., Shaban M.A.E., Carbohydrate Derivatives of 1-substituted 1,2,3-triazoles, J. Chem. Soc., 1967: 519–520 (1967).
- [19] El-Khadem H., Shaban M.A.E., Nassr M.A.M., <u>Oxidation of Mesoxalaldehyde Bis- and Tris-</u> (benzoylhydrazones), J. Chem. Soc., **1969**, 1416-1418 (1969).

- [20] El-Khadem H., El-Sadik M.M., Meshreki M.H., <u>Reactions of Phenylglyoxal Bisarylhydrazones</u>, *J. Chem. Soc.*, **1968**: 2097–2099 (1968).
- [21] Burns J.L., Van Dalfsen J.M., Shawar R.M., Otto K.L., Garber R.L., Quan J.M., Smith A.L., *Journal of Infectious Diseases*, **179**: 1190-1196 (1999).