Theoretical and Experimental Salvation of Nano Copper Sulfate Interacted with 18-crown-6 in Water

Document Type: Research Article

Authors

Department of Chemistry, Faculty of Education, Ain Shams University, Roxy 11711, Cairo, EGYPT

Abstract

Theoretical study of the electronic structure, NonLinear Optical (NLO) properties, and natural bonding orbital (NBO) analysis of 18-crown-6were investigated using Density Functional Theory DFT) calculations at the B3LYP/6-311G (d,p) level of theory. The optimized structure is a nonlinear compound indicated from the dihedral anglesNatural bonding orbital analysis has been analyzed in terms of the hybridization of each atom, natural charges (Core, Valence, and Rydberg), bonding and antibonding orbital's second-order perturbation energy (E(2)). The calculated EHOMO and ELUMO energies of the title molecule can be used to explain the charge transfer in the molecule and to calculate the global properties; the chemical hardness (η), softness(S), global electrophilicity index (w), and electronegativity (χ). The NLO parameters: static dipole moment (µ), polarizability (α), anisotropy polarizability (Δα), first-order hyperpolarizability (βtot) and third-order hyperpolarizability γ⟩), of the studied molecule have been calculated at the same level of theory.The Molecular Electrostatic Potential (MEP) and ElectroStatic Potential (ESP) for the title molecule were investigated and analyzed. Also, the electronic absorption spectra were discussed by time-dependent density functional theory (TD-DFT) calculations in ethanol and water solvents. From the experimental conductance measurements, the association thermodynamic parameters (KA, ∆GA, ∆HA, and ∆SA) and complex formation thermodynamic parameters (Kf, ∆Gf, ∆Hf, and ∆Sf) of nano-CuSO4 in presence of 18-crown-6 as a ligand in 10% ethanol-waterer solvents at different temperatures (298.15, 303.15, 308.15 and 313.15K) were applied and calculated.

Keywords

Main Subjects


[1] Pedersen C.J., Crystalline Salt Complexes of Macrocyclic Polyether's, J. Am. Chem. Soc. 89: 385-391 7017 (1967).
[2] Arnaud-Neu F., Delgado R., Chaves S., Critical Evaluation of Stability Constants and Thermodynamic Functions of Metal Complexes of Crown Ethers, Pure. Appl. Chem. 75: 71-102 (2003).
[3] Wong P.S.H., Antonio B.J., Dearden D.V., Gas-Phase Studies of Valinomycin-Alkali Metal Cation Complexes: Attachment Rates and Cation AffinitiesJ. Am. Soc. Mass Spectrosc. 5: 632-637 (1994).
[5] Popov A.I., Lehn J.M., in: G.A., Melson (Ed.), ''Coordination Chemistry of Macrocyclic Compounds'',Plenum, New York, 537: (1979), Lamb J.D., Izatt R.M., Christensen J.J., Eatough D.J.,
in: Melson G.A. (Ed.), ''Coordination Chemistry of Macrocyclic Compounds'', Plenum, New York, 145: (1979).
[6] Hay B.P., Rustad J.R., Zipperer J.P., Wester D.W., Topological Electron Density Analysis of Organosulfur Compounds, J. Mol. Struct. 337: 201-207 (1995).
[7] El-Azhary A.A., Al-Kahtani A. A., Conformational Study of the Structure of Free 12-Crown-4, J. Phys. Chem. A 108: 9601-9607 (2004).
[8] El-Azhary A A, Al-Kahtani A A, Experimental and Theoretical Study of the Vibrational Spectra of Free 12-Crown-4, J. Phys. Chem. A, 109: 4505-4511 (2005).
[9] Hori K.N., Dou K., Okano A., Ohgami, Tsukube H., Stable of 12-crown-O$_3$N and its Li$^+$ Complex in Aqueous Solution, J. Comp. Chem., 23: 1226-1235 (2002).
[10] Onsager L., Electric Moments of Molecules in Liquids, J. Am. Chem. Soc., 58: 1486-1493 (1936).
[11] Cramer C.J., Truhlar D.G., Implicit Solvation Models: Equilibria, Structure, Spectra, and Dynamics, Chem. Rev., 99: 2161-2200 (1999).
[12] Tanika Arora, Hashim Ali, William A. Burns, Eiko Koizumi, Hideya Koizumi, Theoretical and ATR-FTIR Study of Free 12-Crown-4 in Aqueous Solution, Chem. Phys. Letts., 502: 253-258 (2011).
[13] Mandal K., Kar T., Nandi P.K., Bhattacharyya S.P., Theoretical Study of the Nonlinear Polarizabilities
in H2N and NO2 Substituted Chromophores Containing Two Hetero Aromatic Rings
, Chem. Phys. Letts.,376: 116-124 (2003).
[15] Prasad P.N., Williams D.J., “Introduction to Nonlinear Optical Effects in Molecules and Polymers”, John Wiley & Sons, Inc., New York, NY, USA. (1991).
[17] Foster J.P., Weinhold F., Natural Hybrid Orbitals, J. Am. Chem. Soc 102: 7211-7218 (1980).
[18] Reed A.E., Curtiss L.A., Weinhold F., Intermolecular Interactions from a Natural Bond Orbital, Donor-Acceptor Viewpoint, Chem. Rev., 88: 899-926 (1988).
[19] Holleman A.F., Wiberg E., “Inor. Chem.”, San Diego: Acad. Press. ISBN 0-12-352651-5 (2001).
[20] David A., Wright and Pamela Welbourn Environmental Toxicology, Cambridge University Press, UK. (2002).
[21] El Sayed M, Abou Elleef, Esam A Gomaa, Thermodynamics of Salvations for Nano Zinc Oxide in 2 MNH4Cl+ Mixed DMF – H2O Solvents at Different Temperatures, International Journal of Engineering and Innovative Technology, 2: 121-126 (2013).
[22] Esam A, Gomaa, Ame. Thermodynamics of Complex Formation (Conductometrically) between Cu (II) Ion and 4-Phenyl -1- Diacetyl Monoxime –3 -Thiosemicarbazone (BMPTS) In Methanol at Different Temperatures, J. Sys. Sci. 3: 12-25 (2014).
[23] (a) Becke A., Densityfunctional Thermochemistry III. the Role of Exact Exchange, Chem. Phys., 98:
5648-5652 (1993)
(b) Becke A., Densityfunctional Thermochemistry III. the Role of Exact Exchange, Chem. Phys., 98: 1372-1376 (1993).
[24] Lee C., Yang W., Parr R.G., Development of the Colle-Salvetti Correlation-Energy Formula Into a Functional at the Electron Density, Phys. Rev. B Condens. Matter.157: 785-789 (1988).
[25] Stefanov B., Liu B.G., Liashenko A., Piskorz P., Komaromi I., Martin R.L., Fox D.J., Keith T.,
Al-Laham M.A., Peng C.Y., Nanayakkara A., Challacombe M, Gill P.M., W, Johnson B., Chen W., Wong M.W. , Gonzalez C., Pople J.A., Gaussian, Inc., Pittsburgh PA, (2003).
[26] Frisch M., Trucks J.G.W, Schlegel H.B, Scuseria G.E., et al, Gaussian, Inc., Wallingford CT. (2009).
[27] Dennington, Keith R., Millam T., Semichem J., Gaussview, Version 5 Inc., Shawnee Mission KS. (2009). 
[29] Avci D., Başoğlu A., Atalay Y., NLO and NBO Analysis of Sarcosine Maleic Acid by Using HF and B3LYP Calculations, Struct. Chem., 21: 213-219 (2010).
[31] Pearson R.G., Absolute Electro Negativity and Hardness Correlated with Molecular Orbital Theory, Proc. Nat. Acad. Sci. 83: 8440-8441 (1986).
[32] Chandra A.K., Uchimara T., NLO and NBO Analysis of Sarcosine-Maleic Acid by Using HF and B3LYP Calculations, J. Phy. Chem. A, 105: 3578-3582 (2001).
[34] Szafran M., Komasa A., Bartoszak-Adamska E., Crystal and Molecular Sructure of 4-Carboxypiperidinium Chloride (4-Piperidinecarboxylic Acid Hydrochloride), J. Mol. Struct. 827: 101-107 (2007).
[35] Ives D.J.G., Chemical Thermodynamics, University Chemistry, Maconald Technical and Scientific. (1971).
[36] Dickenson R. E., Geis I., “Benjamin Chemistry”,  Matter W.A., and the Universe, Inc., USA. (1976).
[37] Oswal S.L., Desai J. S., Ijardar S. P., Jain D. M., Studies of Partial Molar Volumes of Alkylamine
in Non-Electrolyte Solvents II. Alkyl Amines in Chloroalkanes at 303.15 And 313.15 K.,
J. Mol. Liquids., 144: 108-114 (2009).
[38] Zhang D.E., Zhang X.J., Ni X.M., Zheng H.G., Yang D.D., Synthesis and Characterization of Nife2o4 Magnetic Nanorods via A PEG-Assisted Route, J. Magn. Mater., 292: 79-82 (2005).
[39] Xia B.Y., Yang P.D., Sun Y.G., One-Dimensional Nanostructures: Synthesis, Characterization, and Applications, Adv Mater 15: 353- 356 (2003).
[40] Duan X., Huang Y., Cui Y., Wang J., Lieber C.M., Indium Phosphide Nanowires as Building Blocks for Nanoscale Electronic and Optoelectronic Devices, Nature 66-69 (2001)
[41] Mohamed N.H., Hamed Esam A, Gomaa Sameh G,  Thermodynamics of Solvation for Nano Zinc Carbonate In Mixed DMF–H2O Solvents at Different Temperatures, International Journal of Engineering and Innovative Technology (IJEIT), 4: 203-207 (2014).
[42] Liu W.J., He W.D., Zhang Z.C., Nanogenerators-from Scientific Discovery to Future Applications,
J. Cryst Growth 290: 592-598 (2006).
[43] Yizahak Marcus, Solubility and Solvation in Mixed Solvent Systems, Pure and Applied Chem., 62: 2069-2076 (1990).
[44] Chen L., Shen L., Xie A., Zhu J., Wu Z., Yang L., Discovery of Diamond in Eclogite from the
Chinese Continental Scientific Drilling Project Main Hole (CCSD-MH) in the Sulu UHPM Belt [In Chinese], Cryst Res Technol., 42: 886-891 (2007).
[45] Yurii A., Simonov A., Alexandr, Dvorkin, Marina, S, Fonari, Tadeush, I, Malinowski, Elzbieta Luboch, Andrzej Cygan, Jan F, Biernat, V, Edward, Ganin, Popkov, Investigation of Structural, Thermal and Magnetic Behaviors of Pristine Barium Carbonate Nanoparticles Synthesized by Chemical Co-Precipitation Method, J. Inclusion Phenomena and Molecular Recognition in Chemistry, 15: 79-85 (1993).
[46] Snehalatha M., Ravikumar C., Hubert Joe I., Sekar N., Jayakumar V.S., Vibrational Spectra and Scaled Quantum Chemical Studies of the Structure of Martius Yellow Sodium Saltmonohydrate, Spectrochim. Acta A, 72: 1121-1126 (2009).
[47] James C., Amal A., Raj, Reghunathan R., Joe I.H., Jayakumar V.S., Structural Conformation and Vibrational Spectroscopic Studies of 2,6-Bis (P-N, N-Dimethyl Benzylidene) Cyclohexanone Using Density Functional Theory, J. Raman Spectrosc., 37: 1381-1392 (2006).
[48] Liu J., Chen Z., Yuan S., Zhejiang J., Study on the Prediction of Visible Absorption Maxima of Azobenzene Compounds, Univ. Sci. B, 6: 584-589 (2005).
[49] Rubarani P., Gangadharan S., Krishnan S., Natural Bond Orbital (NBO) Population Analysis of
1-Azanapthalene-8-Ol, Acta Physica Polonica A., 125: 18-22 (2014).
[50] Scrocco E., Tomasi J., Interpretation by Means of Electrostatic Molecular Potentials, Advances in Quantum Chemistry, 11: (1979) 115-120.
[51] Luque F.J., López J.M., Orozco M., Electrostatic Interactions of a Solute with a Continuum. a Direct Utilization of Ab Initio Molecular Potentials for the Prevision of Solvent Effects, Theor. Chem. Acc., 103: 343-345 (2000).
[52] Okulik N., Jubert A.H., Theoretical Analysis of the Reactive Sites of Non-Steroidal Anti-Inflammatory Drugs, Int. Elect. J. Mol. Des., 4: 17-30 (2005).
[53] Politzer P., Murray J.S., The Fundamental Nature and Role of the Electrostatic Potential in Atoms and Molecules, Theor. Chem. Acc., 108: 134-142 (2002).
[54] Sajan D., Joseph L., Vijayan N., Karabacak M., Natural Bond Orbital Analysis, Electronic Structure, Non-Linear Properties and Vibrational Spectral Analysis of L-Histidinium Bromide Monohydrate:
a Density Functional Theory', Spectrochim. Acta A, 81: 85-98 (2011).
[55] Hansch C., Leo A., Taft R.W., A Survey of Hammett Substituent Constants and Resonance and Field Parameters, Chem. Rev., 91: 165-195 (1991).
[56] Jensen L., Van Duijnen P.T., The First Hyperpolarizability of P-Nitroaniline In 1,4-Dioxane:
a Quantum Mechanical/Molecular Mechanics Study, J. Chem. Phys., 123: Article ID 074307 (2005).
[57] Sałek P., Vahtras O., Helgaker T., Ågren H.,Density-Functional Theory of Linear and Nonlinear Time-Dependent Properties Molecular, J. Chem. Phys., 117: 9630-9635 (2002).
[58] Stähelin M., Burland D.M., Rice J.E., Sign Change of Hyperpolarizabilities of Solvated Water, Chem. Phys. Lett., 191: 245-250 (1992)
[59] Huyskens F.L., Huyskens P.L., Persoons, A.P., Solvent Dependence of the First Hyperpolarizability of P-Nitroanilines: Differences Between Nonspecific Dipole–Dipole Interactions and Solute–Solvent H-Bonds, J. Chem. Phys., 108: 8161-8168 (1998).
[60] Zhang C.R., Chen H.S., Wang G.H., Geometry, Electronic Structure, and Related Properties of Dye Sensitizer: 3,4-Bis[1-(Carboxymethyl)-3-Indolyl]-1H-Pyrrole-2,5-Dione, Chem. Res. Chin. U, 20: 640-646 (2004).
[61] Sun Y., Chen X., Sun L., Guo X., Lu W., A Monolayer Organic Light-Emitting Diode Using an Organic Dye Salt, Chem. Phys. Lett., 83: 1020-1022 (2003).
[62] Christiansen O., Gauss J., Stanton J.F., Non-Linear Optical Properties of Matter, Chem. Phys. Lett., 305: 51-99 (1999).
[63] Cheng L.T., Tam W., Stevenson S.H., Meredith G.R., Rikken G., Marder S.R., Experimental Investigations of Organic Molecular Nonlinear Optical Polarizabilities. 1. Methods and Results on Benzene and Stilbene Derivatives, J. Phys. Chem., 95: 10631-10643 (1991).
[65] Kaatz P., Donley E. A., Shelton D.P., A Comparison of Molecular Hyperpolarizabilities from Gas and Liquid Phase Measurements, J. Chem. Phys., 108: 849-855 (1998).