Microwave Assisted Appraisal of Neem Bark Based Tannin Natural Dye and its Application onto Bio-mordanted Cotton Fabric

Document Type : Research Article

Authors

1 Department of Applied Chemistry, Government College University Faisalabad, Faisalabad 38000, PAKISTAN

2 Department of Chemistry, Government College University Faisalabad, 38000, PAKISTAN

3 Department of Biochemistry, University of Agriculture Faisalabad 38000, PAKISTAN

4 The University of Lahore, Lahore Punjab, PAKISTAN

Abstract

The current study is aimed to utilize the microwave for isolation of colorant from neem bark and its application onto chemical & bio-mordanted cotton fabric. For the purpose, aqueous, acid and organic media have been employed to isolate the colorant and to make its application onto surface modified and bio-mordanted cotton fabric followed by microwave treatment up to 6min. It is found that using optimum extraction and dyeing conditions, acceptable fastness properties have been rated when 9% of Al & Fe, 7% of tannic acid as pre chemical, 7% of acacia, 9% of henna, 7% of pomegranate & 5% of turmeric extract as pre bio mordants. Similarly, 5% of Al, 9% of T.A, 7% of pomegranate, and turmeric extract as post-mordants have been employed. It is recommended that isolation of colorant & dyeing under MW treatment has not only improved the natural dyeing process but also the addition of herbal-based bio-mordants have made the dyeing process more sustainable & ayurvedic. So it is concluded that microwave treatment has not only explored the coloring potential of neem bark but also made possible use of bio-mordants for making process more green with excellent color characteristics under reduced optimal conditions.

Keywords

Main Subjects


[1] Haddar W., Baaka N., Meksi N., Elksibi I., Mhenni M.F., Optimization of an Ecofriendly Dyeing Process Using the Wastewater of the Olive Oil Industry as Natural Dyes for Acrylic Fibers, J. Clean. Prod., 66: 546-554 (2014a).
[2] Mongkholrattanasit R., Saiwan C., Rungruangkitkrai N., Punrattanasin N., Sriharuksa K., Klaichoi C., Nakpathom M., Eco-Dyeing of Silk Fabric with Garcinia dulcis (Roxb.) Kurz Bark as a Source of Natural Dye by Using the Padding Technique, J. Nat. Fiber., 13(1): 65-76 (2016).
[4] Mansour R., Ezzili B., Farouk M., The Use of Response Surface Method to Optimize the Extraction of Natural Dye from Winery Waste in Textile Dyeing, J. Text. I., 108(4): 528-537 (2017).
[5] Khan M.A., Islam S., Mohammad F., Extraction of Natural Dye from Walnut Bark and its Dyeing Properties on Wool Yarn, J. Nat. Fiber., 13(4): 458-469 (2016).
[6] Bukhari M.N., Islam S., Shabbir M., Rather L.J., Shahid M., Khan M.A., Mohammad F., Effect of Binary and Ternary Combination of Metal Salt Mordants on Dyeing and Fastness Properties of Natural Protein Fiber with Juglans regia L. Dye, J. Nat. Fiber., 14(4): 519-529 (2017).
[8] Ibrahim N.A., El-Gamal A.R., Gouda M., Mahrous F., A New Approach for Natural Dyeing and Functional Finishing of Cotton Cellulose, Carbohyd. Polym., 82(4): 1205-1211 (2010).
[9] Jose S., Gurumallesh P.H., Ammayappan L., Eco-Friendly Dyeing of Silk and Cotton Textiles Using Combination of Three Natural Colorants, J. Nat. Fiber., 14(1): 40-49 (2017).
[11] Mohsin M., Farooq A., Ashraf U., Ashraf M.A., Abbas N., Sarwar N., Performance Enhancement of Natural Dyes Extracted from Acacia Bark Using Eco-friendly Cross-linker for Cotton, J. Nat. Fiber., 13(3): 374-381 (2016).
[12] Shabbir M., Rather L.J., Bukhari M.N., Shahid M., Khan M.A., Mohammad F., An Eco-friendly Dyeing of Woolen Yarn by Terminalia chebula Extract with Evaluations of Kinetic and Adsorption Characteristics, J. Adv Res., 7(3): 473-482 (2016).
[13] Adeel S., Rafi S., Mustaan M.A., Salman M., Ghaffar A., Animal Based Natural Dyes: A Short Review, Handbook of Renewable Materials for Coloration and Finishing, John Wiley & Sons- Scrivener Publishing LLC, USA, 43-74 (2018a).
[14] Haddar W., Ben Ticha M., Meksi N., Guesmi A., Application of Anthocyanins as Natural Dye Extracted from Brassica oleracea L. var. capitata f. rubra: Dyeing Studies of Wool and Silk Fibers, Nat. Prod. Res., 32(2): 141-148 (2018).
[17] Zuber M., Zia K.M., Bhatti I.A., Jamil T., Rehman F.U., Rizwan A., Modification of Cellulosic Fabric
Using Polyvinyl Alcohol, part-II: Colorfastness Properties
, Carbohyd. Polym., 87(4): 2439-2446 (2012).
[18] Kumar R., Dayal R., Onial P., Utilization of Tagetes minuta Aerial Parts as a Source of Natural Dyes
for Textile Coloration
, Waste Biomass Valori., 5(4): 699-707 (2014).
[19] Pal A., Kumar R., Upadhyay L., Tripathi Y.C., Antifungal Activity of Natural Dye from Aerial Biomass of Barleria prionitis L. and Dyed Fabrics, Iran. J. Chem. Chem. Eng . (IJCCE), 37(1): 213-221 (2018).
[20] Adeel S., Abrar S., Kiran S., Farooq T., Gulzar T., Jamal M., “Sustainable Application of Natural Dyes in Cosmetic Industry, Handbook of Renewable Materials for Coloration and Finishing”, John Wiley & Sons- Scrivener Publishing LLC, USA, 189-122 (2018b).
[21] Bhuiyan M.R., Rahman M.M., Shaid A., Khan M.A., Decolorization of Textile Wastewater by Gamma Irradiation and its Reuse in Dyeing Process, Desalin. Water Treat., 54(10): 2848-2855 (2015).
[22] Ismal E.O., Yıldırım L., OzdoGan E., Valorisation of Almond Shell Waste in Ultrasonic Bio-mordanted Dyeing: Alternatives to Metallic Mordants, J. Text. I., 106(4): 343-353 (2015).
[23] Ticha M.B., Haddar W., Meksi N., Guesmi A., Mhenni M.F., Improving Dyeability of Modified Cotton Fabrics by the Natural Aqueous Extract from Red Cabbage Using Ultrasonic Energy, Carbohyd. Polym., 154: 287-295 (2016).
[24] Ticha M.B., Meksi N., Attia H.E., Haddar W., Guesmi A., Jannet H.B.,  Mhenni M.F., Ultrasonic Extraction of Parthenocissus quinquefolia Colorants: Extract Identification by HPLC-MS Analysis and Cleaner Application on the Phytodyeing of Natural Fibres, Dyes Pigments., 141: 103-111 (2017).
[25] Adeel S., Rehman F. U., Hameed A., Habib N., Kiran S., Zia K. M., Zuber M., Sustainable Extraction and Dyeing of Microwave-Treated Silk Fabric Using Arjun Bark Colorant, J. Nat. Fibers., 17(5):745-758 (2020).
[26] Patil N.N., Shukla S.R., Degradation of Using Microwave and Conventional Heating, J. Water Process Eng., 7: 314-327 (2015).
[27] Molakarimi M., Mehrizi M. K., Haji A., Effect of Plasma Treatment and Grafting of Β-Cyclodextrin
on Color Properties of Wool Fabric Dyed with Shrimp Shell Extract
, J. Text. I., 107(10): 1314-1321 (2016).
[28] Sajed T., Haji A., Mehrizi M.K., Boroumand M.N., Modification of Wool Protein Fiber with Plasma
and Dendrimer: Effects on Dyeing with Cochineal
, Int. J. Biolo. Macromol., 107: 642-653 (2017).
[29] Bhatti I.A., Zia K.M., Ali Z., Zuber M., Rehman F.U., Modification of Cellulosic Fibers to Enhance their Dyeability Using Uv-Irradiation, Carbohyd. Polym., 89(3): 783-787 (2012).
[30] Yu Y., Hurren C., Millington K.R., Sun L., Wang X., Understanding the Influence of Fibre, Yarn and Fabric Parameters on UV Protection of Wool-Knitted Fabrics, J. Text. I., 108(9): 1609-1617 (2017).
[31] Nakpathom M., Somboon B., Narumol N., Mongkholrattanasit R., Dyeing of Cationized Cotton with Natural Colorant from Purple Corncob, J. Nat. Fiber.. 1-12: (2017).
[32] Rym M., Farouk M., Bechir E.M., Dyeing Properties of Cationized and Non-Cationized Cotton Fabrics Dyed with Vitis Vinifera L. Leaves Extract, J. Text. I., 107(4): 525-530 (2016).
[33] Bulut M.O., Baydar H., Akar E., Ecofriendly Natural Dyeing of Woolen Yarn Using Mordants with Enzymatic Pretreatments, J. Text. I., 105(5): 559-568 (2014).
[34] Cui L., Du G., Chen J., Wang Q., Wang P., Fan X., Effect of Microbial Transglutaminase on Dyeing Properties of Natural Dyes on Wool Fabric, Biocatal. Biotransfor., 26(5): 399-404 (2008).
[35] Hashem M., Taleb M.A., El-Shall F.N., Haggag K., New Prospects in Pretreatment of Cotton Fabrics Using Microwave Heating, Carbohyd. Polym, 103: 385-391 (2014).
[36] Peng L., Guo R., Lan J., Jiang S., Lin S., Microwave-Assisted Deposition of Silver Nanoparticles on Bamboo Pulp Fabric Through Dopamine Functionalization, Appl. Surf. Sci., 386: 151-159 (2016).
[38] Patil N.N., Shukla S.R., Degradation of Using Microwave and Conventional Heating, J. Water Process Eng.,7:314-327 (2015).
[39] Susmitha S., Vidyamol K.K., Ranganayaki P., Vijayaragavan R., Phytochemical Extraction and Antimicrobial Properties of Azadirachta Indica (Neem), Global J. Pharm., 7(3): 316-320 (2013).
[40] Atawodi S.E., Atawodi J.C., Azadirachta Indica (Neem): a Plant of Multiple Biological and Pharmacological Activities, Phytochem. Rev., 8(3): 601-620 (2009).
[41] Gupta S.C., Prasad S., Tyagi A.K., Kunnumakkara A.B., Aggarwal B.B., Neem (Azadirachta Indica): an Indian Traditional Panacea with Modern Molecular Basis, Phytomedicine, 34: 14-20 (2017).
[42] Adeel S., Zia K.M., Abdullah M., Rehman F.U., Salman M., Zuber M., Ultrasonic Assisted Improved Extraction and Dyeing of Mordanted Silk Fabric Using Neem Bark as Source of Natural Colourant,  Nat. Prod. Res., 33(14): 2060-2072 (2019).
 [43] Bandyopadhyay U., Biswas K., Sengupta A., Moitra P., Dutta P., Sarkar D., Debnath P., Ganguly C.K., Banerjee R., Clinical Studies on The Effect of Neem (Azadirachta Indica) Bark Extract on Gastric Secretion and Gastroduodenal Ulcer, Life Sci., 75(24): 2867-2878 (2004).
[45] Adeel S., Zuber M., Rehman F.U., Zia K.M., Microwave-Assisted Extraction and Dyeing of Chemical And Bio-Mordanted Cotton Fabric Using Harmal Seeds as a Source of Natural Dye, Environ. Sci. Pollut. Res., 25(11): 11100-11110 (2018e).
[46] Islam S., Rather L.J., Shabbir M., Sheikh, J.,  Bukhari, M.N., Khan, M.A., Mohammad F., Exploiting the Potential of Polyphenolic Biomordants in Environmentally Friendly Coloration of Wool with Natural Dye From Butea Monosperma Flower Extract, J. Nat. Fibers., 16(4): 512-523 (2019).
 [47] Shabbir M., Rather L.J., Bukhari M.N., Islam S.U., Khan M.A., Mohammad F., First-Time Application of Bio-Mordants In Conjunction with The Alkanna Tinctoria Root Extract for Eco-Friendly Wool Dyeing, J. Nat. Fiber., 16(6): 846-856 (2019).
[48] Rather L.J., Khan M.A., Mohammad F., Biomordanting Potential of Acacia nilotica (Babul) in Conjunction With Kerria Lacca and Rheum Emodi Natural Dyes, J. Nat. Fiber., 16(2): 275-286 (2019).