
Iran. J. Chem. Chem. Eng. Research Article Vol. 37, No. 3, 2018 

 

Research Article                                                                                                                                                                  195 

 

 

Determination of Volumetric Mass Transfer Coefficient  

in Gas-Solid-Liquid Stirred Vessels  

Handling High Solids Concentrations:  

Experiment and Modeling 
 

 

Davoody, Meysam; Abdul Raman, Abdul Aziz*+; Asgharzadeh Ahmadi, Seyed Ali; 

Binti Ibrahim, Shaliza 

Department of Chemical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, 

MALAYSIA 

 

Parthasarathy, Rajarathinam 

School of Civil, Environmental, and Chemical Engineering, RMIT University, City Campus 3001, AUSTRALIA 

 

 

ABSTRACT: Rigorous analysis of the determinants of volumetric mass transfer coefficient (kLa) 

and its accurate forecasting are of vital importance for effectively designing and operating stirred 

reactors. Majority of the available literature is limited to systems with low solids concentration, 

while there has always been a need to investigate the gas-liquid hydrodynamics in tanks handling 

high solid loadings. Several models have been proposed for predicting kLa values, but the application  

of neuro-fuzzy logic for modeling kLa based on combined operational and geometrical conditions  

is still unexplored. In this paper, an ANFIS (adaptive neuro-fuzzy inference system) model  

was designed to map three operational parameters (agitation speed (RPS), solid concentration, 

superficial gas velocity (cm/s)) and one geometrical parameter (number of curved blades) as input 

data, to kLa as output data. Excellent performance of ANFIS’s model in predicting kLa values  

was demonstrated by various performance indicators with a correlation coefficient of 0.9941. 
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INTRODUCTION 

Three-phase (gas-liquid-solid) stirred reactors  

are commonly used in many chemical and biochemical 

process industries such as wastewater treatment, fermentation, 

hydrogenation, chlorination, mining processing and etc[1-8]. 

The volumetric gas-liquid mass transfer coefficient 

(kLa) is considered as one of the major parameters  

 

 

 

in designing and operating gas-liquid-solid reactors [9, 10]. 

Many reviews on gas-liquid reactions and their mass 

transfer measurement methods have been carried out [11-13]. 

For example, many investigations on oxygen mass 

transfer into the water were summarized by Nienow [14]; 

Effects of impeller speed (300-600 rpm), gas flow rate   
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(8.92-33.81 cc/s) and liquid phase viscosity were investigated 

in a study by Puthli et al. [15]. Besides, the oxygen 

transfer rate in bioprocesses was studied by Garcia-

Ochoa & Gomez [16] by reviewing the measurement 

methods and main empirical equations of kLa.  

They considered impeller speed, type and number of 

impellers and gas flow rate as the main parameters  

in scale-up and design of stirred vessels for bioprocesses. 

Presence of solids can influence kLa. It has been 

reported that the settling of solid decreases the volumetric 

gas-liquid mass transfer coefficient in three-phase  

systems [17, 18]. In another study, Mehta and Sharma [19] 

reported a direct relationship between volumetric  

gas-liquid mass transfer coefficient and concentration of solids. 

In this regards, Gentile et al. (2003) [20] explained that 

the presence of solids increased specific gas-liquid 

interfacial area by causing break-up in large bubbles. 

Kawase et al. [21] measured the gas-liquid mass transfer 

in a Newtonian and non-Newtonian fluid. They found that 

the addition of solid particles increased the value of kLa in water 

and decreased it in carboxymethyl cellulose aqueous solution. 

Tagawa et al. [22] studied the effect of two types of 

floating solid particles on gas-liquid mass transfer  

in a stirred tank with a diameter of 0.2m. They reported that 

the increase in impeller speed increased the solid particles 

dispersion within the tank and the presence of floating 

solid decreased the power consumption due to decreased 

slurry density. However, the loading of a floating particle 

in the tank reduced the value of volumetric gas-liquid 

mass transfer coefficient in this study. They mentioned 

that it could be due to the decrease in the gas-liquid 

interfacial area. In addition, the floating solids increased 

the tendency of bubble coalescence and caused large 

bubble formation which reduced gas hold-up and 

volumetric gas-liquid mass transfer coefficient eventually. 

For modeling, mathematical correlations were proposed 

to predict kLa with respect to specific power input (P/V) 

[23-27]. Generally, it is difficult to propose a mathematical 

model capable of including all factors involved in  

a particular process. If the problem contains many independent 

variables, regression methods cannot be used due to loss 

of accuracy and increased number of variables in the 

regression (linear, non-linear, exponential, etc.) [28].  

Due to the major drawbacks, Artificial Neural 

Networks (ANN) has been proposed to replace the 

conventional modeling. ANN does not rely on 

assumptions concerning the nature of phenomenological 

mechanism but defines the mathematical equations and 

correlations. Efficiencies of ANN and mathematical 

models in predicting mass transfer coefficient have been 

compared in various studies and superior performance  

of ANN has been reported by all authors. Table 1 lists  

the major proposed ANN models for determining kLa. 

Despite its capabilities, ANN suffers from some 

drawbacks that limit its applications. The main issue with 

ANN is lack of interpretation. ANN failed to capture  

the causal relationships between the major system 

components and improve the explicit knowledge of the 

user [29]. Based on the report, ANN did not show 

satisfactory results in extrapolation. 

Later, Jang [35] introduced Adaptive Neuro-Fuzzy 

Inference Systems (ANFIS) which is basically a combination  

of neural networks and fuzzy concepts. The new technique 

removes the major problems of both ANN (lack of 

interpretation) and fuzzy logic (adaptivity) systems and 

includes the main benefits. Various authors have reported 

satisfactory performance of ANFIS in different areas of 

chemical engineering such as membrane separation process, 

heat transfer, biodegradation, distillation, supercritical 

fluid extraction, and emulsion formation [36-45]. 

In accordance with the authors’ knowledge, there is 

no reliable report in the available literature regarding  

the application of ANFIS in predicting kLa based on  

a combination of operational and geometrical parameters. 

Therefore, a comparative work was carried out in  

this study to identify the most reliable model for predicting 

mass transfer coefficient in stirred vessels. In the first part 

of the study, experiments were carried out to determine 

kLa in different conditions. Agitation speed (RPS),  

solid concentration, superficial gas velocity (cm/s), and  

a number of curved blades were selected as the main 

variables. The gathered experimental data was used in the 

second part of the study to build two artificial 

intelligence-based models, using ANN and ANFIS 

respectively. The last part of the study was devoted  

to compare the accuracy of the two models to identify  

the most reliable one.  

 

EXPERIMENTAL SECTION 

Experiment 

Rushton turbine is widely employed for gaseous 

dispersion in multiphase systems [46-51]. However, 
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Table 1: The proposed ANN models for agitated vessels in literature. 

Authors Studied system Input variables 
Output 

variable(s) 
Developed 

Models 
Accuracy 

indicator(s) 
Remarks 

[29] 
OD of Carica 

Papaya .L 

Temperature (°C) 
Solution concentration (%) 

Agitation speed (RPM) 

WR 

 

 
SG 

 

 
WL 

ANN 

RSM 
 

ANN 

RSM 
 

ANN 

RSM 

RMSE = 0.023 

RMSE = 0.154 
 

RMSE = 0.03 

RMSE = 0.051 
 

RMSE = 0.138 

RMSE = 0.123 

The results of ANN model 
indicated that it was much 

more robust and accurate in 

estimating the values of 
dependent variables when 

compared to the RSM model 

[30] 
OD of Kaffir 

lime peel 

Solute concentration (%) 

Temperature (°C) 
Immersion time (h) 

WL 
 

 

SG 

ANN 

MSE = 6.5813 

R2= 0.9745 

 
MSE = 5.934 

R2= 0.9632 

ANN was found suitable for 

predicting WL and SD during 
OD process of kaffir lime peel 

[31] 

Mass transfer 

in stirred 

vessels 

Stirrer speed (s-1) 

Superficial gas velocity (m/s) 

Consistency index (Pa.sn) 

Flow index 

kLa ANN R2= 0.98 

The use of neural networks 

presented an alternative to 

classical models using 

regression techniques 

[32] 
CO2 absorption 

into aqueous 

DETA 

Gas phase concentration (%) 
Inert gas load (kmol/m3h) 

Liquid flow rate (m3/m2h) 

Solvent concentration (kmol/m3) 
CO2 loading (mol CO2/ mol amine) 

Feed temperature (°C) 

kLa ANN AAD% = 7.6 

Results demonstrated that 

ANN model was suitable for 
predicting the absorption 

performance of packed 

columns 

[33] OD of apple 

Temperature (°C) 

Concentration of osmotic solution 
(Brix) 

Immersion time (h) 

Surface (cm2) 

WR 

 

 
SG 

ANN 

MSE = 13.9 

R2= 0.96 
 

MSE = 4.4 

R2= 0.89 

ANN performed better  
when compared to linear 

multi-variable regression 

OD: Osmotic Dehydration  n: Flow index in a power-law model                WR: Weight Reduction 

AAD: Absolute Average Deviation    SG: Solid Gain 

R2: Correlation Coefficient WL: Water Loss             MSE: Mean Square Error 
 

certain drawbacks such as reduction in power input  

with gassing due to the ventilated cavity formation limit 

its applications [52, 53]. A new design called hollow 

blade or Curved Blade (CB) was therefore introduced by 

[54]. The new design offers a higher mass transfer 

coefficient (almost 20%) and better power draw stability 

over Rushton turbine [55]. With reference to the 

mentioned points, CB was selected as the impeller in this 

study. Table 2 lists the specifications of the impeller and 

Fig. 1 reflects its design. 

In this study, the mass transfer coefficient was studied  

as a function of superficial gas velocity, solid percentage, 

impeller rotational speed, and a number of curved blades. 

An experimental rig was designed and fabricated for  

this study. Fig. 2 illustrates this rig followed by Table 3 

listing different parts of the apparatus. 

The tank was made of scratch-proof Perspex material 

with 5 mm thickness. Four equally spaced baffles with  

a length of 4 cm (0.1D) were attached along the entire 

depth of the tank to minimize the vortex effects. Bottom 

of the tank was flat and the top of the tank was kept open 

for all experiments. 

Agitation was provided by a shaft placed at the 

vertical axis of the tank and driven by a 3.0 kW motor. 

The motor shaft was connected to the impeller via a shaft 

coupling. A 4.0 kW-frequency inverter was used to vary 

the agitation speed. Experiments were conducted from 

300 to 1200 RPM (5-20 RPS). A ring sparger made of 

copper tubing that had a similar outer diameter as  

the impeller was chosen. Equally distanced holes of 2 mm 

diameter were made only at the bottom of the ring  

to avoid solid particles from blocking the sparger hole. 

Geometrical dimensions of the stirred vessel used  

in this study were selected after identifying the most 

common fractions and ratios in the relevant literature. 

These dimensions are listed in Table 4. 

 

Volumetric mass transfer coefficient measurement 

A physical method was chosen to measure the mass transfer 

coefficient in this work. As the solid particles are inert, 
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Table 2: Details of the curved blade impeller. 

Specification Length Width Swept area Angle Thickness 

Values D/4 D/5 (tip to tip distance) D2/40 180° 3mm 

 

Table 3: List of symbols in the experimental apparatus. 

Symbol Equipment Symbol Equipment 

A Pully N Manometer Tubes 

B Bearings O Manometer Tubes 

C Motor P Pressure Sensors 

D Impeller Coupler Q Digital Display 

E Shaft R Tachometer 

F Liquid level S Weight 

G Sparger T Level Arm 

H Tank U Load Cell 

I Rotameter V Recorder 

J Needle Valve W Invertor 

K Mirror Stand X Cable 

L Light Y Shaft 

M Manometer Scale   

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1: Curved blade impeller. 

 

the mass transfer is only between the gaseous and liquid 

phases. The absorption of oxygen for the gaseous phase 

(air) to the liquid phase (water) was measured using  

a dissolved oxygen probe. The probe was accurate to  

0.3 mg/L, while the resolution and range were 0.01 mg/L 

and 0-20 mg/L, respectively. The response time was less 

than 2 seconds. The probe was kept at a fixed location 

about 10 cm from the impeller near the tank wall. After 

obtaining the DO values, the mass transfer was calculated 

using the following equation: 

 * t
L t

dC
K a C C

dt
        (1) 

Where V is the liquid volume in the reactor, C* is  

the saturated dissolved oxygen concentration and Ct is  

the dissolved oxygen concentration at any time t in  

the reactor. After integration, Eq (1) transforms to below: 
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Fig. 2: Experimental setup. 

 

*
0

L*
t

C C
ln K a.t

C C

 
 

  

     (2) 

A plot of the left-hand side of Eq (2) against time 

provides a straight line with a slope of KLa.  The 

procedures of measuring the absorption of oxygen for the 

gaseous phase (air) to liquid phase (water) were used 

procedure was used for all experiments in this study. 

 

Modeling 

Two artificial intelligence-based models, namely 

ANN and ANFIS, were designed in this study to map  

the four input parameters (number of curved blades, agitation 

speed, solid concentration, and superficial gas velocity)  

in relation to the mass transfer coefficient. ANFIS is a kind 

of neural network that integrates both ANN and fuzzy 

logic principles in a single framework.  

 

Artificial Neural Networks 

The history of ANN began with the pioneering work 

of McCulloch and Pitts [56] who had first introduced the 

idea of ANN as computing machines. ANN is a 

computational system which follows the computational 

abilities of biological systems. Ability to find nonlinear 

and complex relationships has been the main reason for 

the ANN popularity in various areas such as image 

processing [57], document analysis [58], engineering 

tasks [59], financial modeling [60], and mass transfer 

studies [30-33]. 

A network consisting of multiple layers of artificial 

neurons is designed in order to determine the relationship 

between the experimental data. The first and last layers 

are called input and output layer, respectively.  

The in-between layers are known as hidden layers. Each of 

the neurons in the first layer receives information corresponding 

to one independent input variable. These neurons are simple 

and they process elements which transfer the receiving 

data to the output through the simple equation below: 

 n

i ij j ij 1
O f w I b


       (3) 

where Oi, f, wij, Ij, bi, and n  refer to the output of the  

ith neuron, transfer function, a synaptic weight corresponding 

to the jth synapse of the ith neuron, jth input signal 
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Table 4: Geometrical dimensions of the used stirred vessel. 

Descriptions Size (Ratio) Actual size (cm) 

Tank diameter, T T 40.0 

Impeller clearance, C T/3 13.3 

Impeller diameter, D T/3 13.3 

Sparger diameter, SD T/3 13.3 

Sparger clearance, S T/6 6.7 

Liquid height, H T 40.0 

Baffle height, X 1.5T 60.0 

Baffle width, BW 0.1T 4.0 

 

to the ith neuron, the bias of the ith neuron, and the 

number of input signals to the ith neuron, respectively.  

The neurons inside the network are connected to each other  

by a direct communication link with associated weight (wij). 

The learning algorithm is another major factor that 

affects network performance. The neurons in each layer 

are connected to each other by communication links 

associated with connection weights. During ANN 

training, weights of the bonds are modified to decrease 

the calculated error. In general, different learning 

algorithms can be employed to establish the connection 

weights by minimizing the selected error function.  

In simple words, training a network is a process through 

which the values of weights and bias are adjusted.  

As stated before, in BNN technique weight and bias  

are updated in the direction of the negative gradient of  

the training error. The main types of BNNs are, Scaled 

Conjugate Gradient (SCG), Levemberg-Marquardt (LM), 

Gradient Descent with Momentum (GDA) and Resilient 

Back- Propagation (RP). In order to make sure the best 

possible network was selected, all variants were tested  

in this study during the training phase. The results obtained 

from different models were compared. The training 

parameters of the proposed ANN model are shown  

in Table 5. 

 

Adaptive Neuro-Fuzzy Inference System (ANFIS) 

ANFIS had been first proposed by Jang [35]. There 

are two types of inference systems in the fuzzy part, 

namely, zero or first-order Sugeno inference system and 

Tsukamoto inference system. By applying the defined 

fuzzy rules to input variables, output variables  

are achieved [35]: 

1 1
Rule 1: if x is A and y is B the                            (4)  

1 1 1 1
f p x q y r     

2 2
Rule 2: if x is A and y is B the    (5) 

2 2 2 2
f p x q y r    

where,  p1, p2, q1, and q2 are linear parameters while 

A1, A2, B1, and B2 are nonlinear parameters. 

The architecture of a two-input first-order Sugeno 

ANFIS model with two rules is depicted in Fig. 3.  

It is followed by the description of each layer and  

the function of their neurons. 

The network includes 5 layers, namely, fuzzy layer, 

product layer, normalized layer, defuzzifier layer, and  

a total output layer. The four nodes of A1, A2, B1, and B2 

in the fuzzy layer represent linguistic labels in terms of 

fuzzy sets. They receive inputs x and y. By applying 

membership functions, the degree by which each input 

element belongs to the fuzzy sets is determined.  

The process can be shown as: 

i
1,i A

Q (X) for i 1,2       (6) 

j1, j B
Q (Y) for i 1,2      (7) 

Where X and Y are inputs to node 1 while Ai and Bj 

are the fuzzy sets. Q1,i shows the membership degree of 

the input element.  

The Gaussian curve and the generalized bell-shaped 

membership functions are among the most popular 

membership functions employed for µAi (X) and  

µBj (Y)  [42]. 
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Table 5: Training parameters used for designing ANN. 

Property Value 

Learning algorithms 

Levemberg-Marquardt 

Conjugate gradient 

Gradient descent with momentum 
Resilient Backpropagation 

Minimized error function Mean Square Error (MSE) 

Learning Supervised 

Input layer transfer function None 

Hidden layer transfer function Hyperbolic tangent sigmoid 

Output layer transfer function Linear 

Number of training epochs (iterations) 200 

Number of input neurons 3 (equal to number of input variables) 

Number of hidden neurons 3-20 

Number of output neurons 1 (equal to number of output variable) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3: ANFIS architecture of a two input model with two rules. 
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i
A 2

i
i

i

1

c
1 x b

a


  
   
   

      (8) 

i

2

i
A

i

x c
(X) exp

a

  
        

    (9) 

In these two equations, ai, bi, and ci refer to the set 

parameters. 

The two nodes of the product layer with symbol ‘Π’ 

receive the generated signals of the previous layer and 

create the layer outputs (w1 and w2) through multiplying 

the signals. The produced outputs are weight functions  

of the normalized layer and can be shown as: 

   
i i

2,i i A B
Q w x y for i 1,2                    (10)  

Where, Q2,i represents the output of the product layer. 

Nodes in the normalized layer are labeled with “N”. 

The calculated Q2,i in the previous layer demonstrates  

the firing strength of a rule. The ith node calculates the ratio 

of the ith rule’s firing strength to the sum of all rules’ 

firing strength. The normalized firing strength (Q3,i)  

is achieved by normalization of the weight function: 

i
3,i i

1 2

w
Q w for i 1,2

w w
  


                (11) 

The entering signals get fuzzified at the beginning of 

the process. During defuzzification, layer signals get 

defuzzified and they shift back to the normal form 

through the following formula: 

 4,i i i i i i i
Q w f w p x q y r for i 1,2                   (12) 

Where Q4,i, wi¯, and (pix + qiy +ri) stand for the 

output of layer four, the normalized firing strength from 

layer 3, and the set parameter, respectively. 

The single node of the last layer with the symbol “ ” 

computes the final decision as follows: 

i

i ii
5,i i ii

ii

w f
Q overall output w f

w
  





             (13) 

ANFIS can use three different methodologies  

to generate the initial FIS. Genfis 1 produces initial FIS 

from the data using grid partitioning, while genfis 2 and 

genfis 3 utilize subtractive clustering and fuzzy c-means 

clustering, respectively. Once the initial FIS is settled,  

the genfis accomplishes the modeling process by extracting 

some rules that describe the data behavior [35]. 

 

Statistical parameters 

Five error functions were employed in order to 

determine the deviation of the model’s results from  

the targets (experimental data). These statistical indicators 

are listed in Table 6. 

 

Preprocessing 

Pre-processing input data can improve network 

performance. During this process, input data are scaled  

to become more understandable for the network. For instance, 

reducing the dimension of input vectors can be fruitful 

when the components of the vectors are correlated (redundant). 

In this study, the principal component analysis [42]  

was utilized for processing the columns of the input matrix 

for both models. 

 

RESULTS AND DISCUSSION 

Experiment 

Figs. 4 to 6 illustrate the obtained values in the 

experimental part of this study. In these figures, volumetric 

mass transfer coefficients are plotted versus the corresponding 

RPS for 4, 6, 8, and 12 curved blade impellers.  

The information is represented in three different superficial 

gas velocities.   

 

Parameter analysis 

Effect of number of blades 

Effect of the number of blades was studied in SC of 0.1 

and Ug of 0.3 cm/s. The obtained kLa for 4CB, 6CB, 8CB 

and 12 CB impellers in a wide range of agitation speeds 

are plotted in Fig. 6. 12CB produced the highest kLa value  

at 12 RPS. 4CB produced slightly higher kLa value compared 

to 8CB at 12 RPS. The lowest kLa values were produced 

by 6CB and 4CB below 7 RPS while 12CB had the lowest 

kLa value above the same agitation speed. Table 7 presents 

the achieved polynomial relationships for all four impellers. 

 

Effect of agitation speed 

Fig. 7 shows the variation of kLa values as a function 

of RPS at constant Ug of 0.2 cm/s and blade number of 6 

These values increased in polynomial order with R2 equal 

to 0.9992. 
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Table 6: Error functions and their formula. 

Error function Equation No. Reference 

Root mean square error 
 

14 [67] 

Mean absolute error 
 

15 [29] 

Absolute Average Deviation 
 

16 [68] 

Pearson's cumulative test statistic 
 

17 [69] 

Correlation coefficient (R2) 
 

18 [70] 

n, T, O, and T’ refer to the number of input patterns, experimental values (target), model’s predictions (output), and average value of 

the  experimental values, respectively 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4: Obtained kLa values in constant SC of 0.1 and Ug of 

0.15 cm/s. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5: Obtained kLa values in constant SC of 0.1 and Ug of 

0.2 cm/s. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6: Obtained kLa values in constant SC of 0.1 and Ug of 

0.3 cm/s. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7: kLa values of 6CB impeller at various RPS and 

constant Ug of 0.2 cm/s. 

 

As shown in Fig. 7, kLa value increased until certain 

agitation speed (10 RPS), beyond which the kLa value 

decreased. 

Highest kLa value 

The maximum kLa values obtained in different 

conditions are listed in Table 8. 

5          6          7           8          9         10         11        12         13 

RPS 

0.05 
 

0.045 
 

0.04 
 

0.035 
 

0.03 
 

0.025 
 

0.02 
 

0.015 
 

0.01 
 

0.005 

k
L
a
 

0.055 

 

0.05 

 
0.045 

 
0.04 

 
0.035 

 

0.03 

 
0.025 

 
0.02 

k
L
a
 

5          6          7           8          9         10        11        12        13 

RPS 

5          6          7          8          9         10         11        12        13 

RPS 

5          6           7          8          9         10        11        12         13 

RPS 

0.05 

 

0.045 

 
0.04 

 
0.035 

 

0.03 

 

0.025 

 
0.02 

 

0.015 

k
L
a
 

0.05 
 

0.045 
 

0.04 
 

0.035 
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0.02 
 

0.015 
 

0.01 
 

0.005 
 

0 

k
L
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Table 7: Polynomial relationships for all CB impellers. 

Impeller Polynominal relationship R2 

4CB kLa = -0.0007RPS2 + 0.015RPS – 0.0448 0.9931 

6CB kLa = -0.0007RPS2 + 0.016RPS – 0.0463 0.9967 

8CB kLa = -0.0008RPS2 + 0.017RPS – 0.046 0.9993 

12CB kLa = -0.0004RPS2 + 0.010RPS – 0.0202 0.9996 

 

Table 8: Maximum kLa values and their corresponding agitation speeds. 

Impeller Condition 

 

SC = 0.1 

Ug = 0.15 cm/s Ug = 0.2 cm/s Ug = 0.3 cm/s 

kLa RPS kLa RPS kLa RPS 

4CB 0.0433 12 0.0453 10 0.0501 10 

6CB 0.0393 10 0.0442 10 0.0481 12 

8CB 0.0434 10 0.0437 10 0.049 12 

12CB 0.0381 7 0.0465 10 0.0525 12 

 

Table 9: Data statistics for the considered parameters for modeling. 

Modeling 
Subsets 

Data 
statistics 

Input parameters Output parameter 

Volumetric mass transfer 

coefficient (kLa) 
Number of 

curved blades 

Agitation speed 

(RPS) 

Superficial gas 

velocity (Ug) 

Solid concentration 

(%) 

Training set 

Minimum 4 5 15 10 0.0143 

Maximum 12 12 30 20 0.0525 

Average 7.38 8.59 17.75 16.66 0.037 

Testing Set 

Minimum 4 5 15 10 0.0193 

Maximum 12 12 30 20 0.0501 

Average 8 8.11 20.62 16.66 0.0368 

Overall Set 

Minimum 4 5 15 10 0.0143 

Maximum 12 12 30 20 0.0525 

Average 7.5 8.5 18.23 16.66 0.037 

 

As illustrated by Figs. 4-6 and indicated by Table 8, 

increasing agitation speed resulted in decreasing 

maximum kLa values when superficial gas velocity was 

equal to 0.15 cm/s. As Ug reached 0.2 cm/s, all four 

impellers showed their maximum kLa value at 10 RPS. 

Increasing Ug to 0.3 cm/s did not change the peak value 

for 4CB, but upgrade the maximum kLa value for  

the remaining three impellers at 12 RPS. 

Modeling 

Data set 

Descriptive statistics of the considered parameters  

for both models are listed in Table 9. 

 

ANN 

Both models were developed in the environment  

of MATLAB V7.0 (R14). The available data set was 
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divided into two groups: training and testing data set. 

During the model training, the network had access to both 

input and output variables to train itself. Meanwhile,  

in the testing phase, only the input data was received and 

the generated outputs were compared to the targets  

to evaluate the accuracy of the network’s predictions.  

The data portioning (training set, testing test, and 

cross-validation set) was carried out to reduce the risk of 

over-training and over-parameterization, and successful 

training was achieved when learning and cross-validation 

curves (MSE vs. epochs) approached to zero. Data 

division was done randomly to minimize errors due to 

possible systematic trends in variables. 

As discussed before, there are various learning 

algorithms to train a neural network. The four most 

commonly used algorithms were chosen in this study  

to train the network. Besides, the number of neurons  

in hidden-layer varied from 3 to 20 in each learning 

algorithm. It was hoped that the diversity of learning 

algorithms and number of neurons in hidden layer could 

lead to the development of the best possible neural 

network as this was a common procedure in the 

previously published reports [28-30]. 

The performance of the resulting networks  

was compared to each other to select the best network  

in terms of mean square error criteria. The recorded results 

in epoch 50 are listed in Table 10. 

As observed from Table 10, a three-layer neural 

network with 7 neurons in hidden layer that followed 

Levenberge Marquardt learning algorithm offered the 

least test error (5.04) compared to the other networks and 

was therefore chosen as the most reliable ANN model.  

As elaborated before, the neural networks have access to 

both input and target data during the training phase, while 

only input data are provided during the test phase. That 

would explain the notable difference in the MSE values 

between the training and testing phase for each network 

developed. Systematically, the MSE values of the 

networks designed with RB algorithm started increasing 

with an increase in the number of hidden neurons up to  

a certain number (10); and henceforth, MSE values tend  

to decrease. The networks developed by other algorithms 

did not exhibit the same discipline. The most accurate 

networks created by RB, SCG, and GDA algorithms 

achieved the MSE values of 9.26, 5.34, and 5.3 with 

corresponding hidden neuron numbers of 3, 6, and 4 

respectively. Fig. 8 represents the structure of the 

proposed ANN model of this study. Later, this model  

was compared with the proposed neuro-fuzzy model in terms 

of prediction accuracy. 

 

ANFIS 

Subtractive clustering has been employed for 

developing initial FIS models as the superior speed and 

ability of this partitioning technique in capturing the 

complex relationship between the input and output 

variables has been determined in previous studies [42]. 

Once the parameters of subtractive clustering, namely, 

the range of influence (ROI), Squash Factor (SF), Accept 

Ratio (AR), and reject ratio (RR) are optimized, the most 

reliable model can be obtained. In this study, the initial 

FIS was designed by the initial values of the clustering 

parameters (ROI=0.5, SF=1.25, AR=0.5, and RR=0.15). 

Thereafter, the created ANFIS’s model was modified  

by changing the values of the clustering parameters around 

their default numbers until the best performance (in terms 

of RMSE) was achieved. Then, the remaining three 

parameters were held constant in their default values, 

resulting in four computational groups in order to 

optimize each parameter. In the first test, for instance,  

the effect of ROI was examined in a range of 0.4-0.6 while 

values of SF, AR, and RR were kept at default values of 

1.25, 0.5, and 0.15, respectively. The investigation ranges 

of SF, AR, and RR were fixed as 1.2-1.36, 0.45-0.55,  

and 0.1-0.2 respectively. Once the optimal value for  

a particular parameter was discovered, it was used  

as the value of the corresponding parameter in the next test, 

replacing the default value. Fig. 9 reflects the variations 

in RMSE for different values of clustering parameters for 

testing data. Data are recorded in the epoch number of 10.  

Evidently, all clustering parameters except AR had a 

significant impact on the accuracy of the neuro-fuzzy 

network. Therefore, there is no need to update the initial 

values of AR. Conversely, Figs. 9(a), 9(b), and 9(d) 

demonstrate that increasing the values of ROI, SF, and 

RR had a considerable impact on RMSE values.  

As a result, the values of ROI, SF, and RR were changed  

to 0.46, 1.32, and 0.18 respectively in order to have the most 

accurate model. Finally, the optimum neuro-fuzzy 

structure (ROI=0.46, SF=1.32, AR=0.5, and RR=0.18) 

for forecasting kLa value in a curved blade Rushton turbine 

stirred vessel is depicted in Fig. 10. The RMSE values 
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Table 10: Performances of various designed neural networks. 

Algorithm Neurons number in hidden layer 
MSE 

Training Test 

Resilient Backpropagation 3 1.07 9.26 

Resilient Backpropagation 4 2.19 10.73 

Resilient Backpropagation 5 2.97 13.35 

Resilient Backpropagation 6 4.79 15.21 

Resilient Backpropagation 7 3.06 15.45 

Resilient Backpropagation 8 3.29 18.79 

Resilient Backpropagation 9 4.11 19.26 

Resilient Backpropagation 10 4.43 22.99 

Resilient Backpropagation 15 1.53 13.01 

Resilient Backpropagation 20 1.09 12.84 

LevenbergeMarquardt 3 1.35 10.8 

LevenbergeMarquardt 4 0.99 6.2 

LevenbergeMarquardt 5 2.91 7.9 

LevenbergeMarquardt 6 0.02 5.21 

LevenbergeMarquardt 7 0.13 5.04 

LevenbergeMarquardt 8 6.76 13.07 

LevenbergeMarquardt 9 7.03 12.78 

LevenbergeMarquardt 10 8.93 19.24 

LevenbergeMarquardt 15 7.90 21.79 

LevenbergeMarquardt 20 6.09 17.89 

Scaled conjugate gradient 3 4.86 10.54 

Scaled conjugate gradient 4 1.11 9.03 

Scaled conjugate gradient 5 1.04 10.98 

Scaled conjugate gradient 6 0.09 5.34 

Scaled conjugate gradient 7 1.02 8.98 

Scaled conjugate gradient 8 1.09 8.88 

Scaled conjugate gradient 9 1.10 8.40 

Scaled conjugate gradient 10 1.12 8.98 

Scaled conjugate gradient 15 1.15 7.57 

Scaled conjugate gradient 20 3.18 17.09 

Gradient descent with momentum 3 2.54 10.86 

Gradient descent with momentum 4 0.16 5.3 

Gradient descent with momentum 5 1.71 7.57 

Gradient descent with momentum 6 1.29 5.35 

Gradient descent with momentum 7 2.23 6.99 

Gradient descent with momentum 8 2.01 6.14 

Gradient descent with momentum 9 1.57 20.34 

Gradient descent with momentum 10 0.98 11.21 

Gradient descent with momentum 15 0.13 20.75 

Gradient descent with momentum 20 0.19 8.54 
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Fig. 8: Structure of the most accurate neural network. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 9: Effect of clustering parameters (ROI (a), SF (b), AR(c), and RR (d)) on model’s performance. 
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Fig. 10: Structure of the optimum ANFIS mod. 

 

before and after the modification process were 0.015 and 

0.009 respectively. The final value of RMSE indicates 

excellent agreement between ANFIS outputs and their 

targets (experimental data).  

 

Comparing the proposed models 

Performances of the two proposed models in this 

study (ANN and ANFIS) were examined by comparing 

the correctness of the predicted results. Five different 

performance indicators listed in Table 6 were employed 

in order to assure the judgment. Table 11 represents  

the findings. 

In Table 11 and Fig. 11，the prediction results of 

both models were compared for the training, testing, and 

overall data. Since only 10% of the available data was put 

to test, the error values for the overall data were closer  

to those of the training data. However, it should be noted 

that the recorded error values in the testing phase have 

the main role in identifying the accuracy of any designed 

model. As observed in Table 11, all indices clearly 

indicated that the proposed ANFIS’s model generated 

more accurate outputs with less deviation from the 

targets. ANFIS’s model exhibited superior predictive 

ability in forecasting the volumetric mass transfer 

coefficient in this study compared to the created ANN’s 

model.  In the testing part, the correlation coefficient 

suggests that 99.01% of the total variations were 

explained by the neuro-fuzzy model, while 3.88% of the 

total predictions did not follow the experimental data in 

ANN. Comparison of the reported error values with the 

other indices reported the same dominant performance of 

ANFIS-based models. 

Further comparison is made in Fig 11, in which 

deviations between the predictions done by ANFIS’s and 

ANN’s model are plotted for all experimental samples. 

As exhibited by Fig. 11, predictions of the ANN-

based model were not as precise as those of ANFIS’s 

model. The recorded values in Table 11 and the graphical 

comparison presented in Fig. 11 clearly ascertain that  

the ANFIS-based model implied more satisfactory 

predictions and hence was selected as the reliable model. 

Moreover, the developed ANFIS’s model in this study 

presented more satisfactory predictions compared  

to the ANN’s and RSM’s models as listed in Table 1. 

 

CONCLUSIONS 

In this study, experiments were carried out to identify 

the volumetric mass transfer coefficient in three-phase 

systems. Experimental data was gathered to design  

two artificial intelligence-based models, using artificial neural 

networks and adaptive neuro-fuzzy inference system, 

respectively, for mapping four input variables to kLa.  

The comparison showed that ANFIS’s model had better 

performance. The achievements of this study can be 

summarised as follows: 

 Mass transfer coefficient, kLa, in a curved blade 

agitated stirred vessel was determined in various 

operational and geometrical conditions (agitation speeds 
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Table 11: Comparing accuracy of the developed models. 

Performance indices Train Test Overall 

 ANN ANFIS ANN ANFIS ANN ANFIS 

MAE 0.088 0.0032 0.104 0.0051 0.093 0.0035 

RMSE 0.765 0.0043 0.867 0.0059 0.0802 0.0046 

AAD% 7.83 1.22 8.04 1.82 7.87 1.33 

ϰ2 0.074 0.0014 0.096 0.0019 0.081 0.0015 

R2 0.9603 0.9947 0.9512 0.9901 0.9578 0.9941 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 11: Deviations of the proposed models. 

 

of 5, 7, 10, 12 RPS, superficial gas velocities of 0.15, 0.2, 

0.3 cm/s, solid concentrations of 0.1, 0.2, and curved 

blade numbers of 4, 6, 8, and 12).  

 ANFIS was employed to develop a reliable model  

to map four input variables to kLa using the selected 

experimental data. The proposed model was able to 

predict the data not utilized for training with a correlation 

coefficient of 0.9901. 

 Based on the same data set, another model  

was developed by ANN. The performance indices such as 

MAE, RMSE, AAD%, ϰ2, and R2 demonstrated superior 

efficiency of the ANFIS’s model over ANN’s model.  

In the testing part where the accuracy of the models’ 

predictions was examined, AAD% of 1.82 revealed that most of  

the total variations were explained by the ANFIS’s model, 

while AAD% was equal to 8.04 for the ANN’s model 

 Modeling of multi-phase systems in stirred vessels 

are complex and challenging as several different phenomena 

are taking place simultaneously. This study determined 

the efficiency of ANFIS in approximating the system 

behavior and predicting kLa values. The authors are optimistic 

that ANFIS can be used in similar modeling and optimization 

studies based on satisfactory results in this study.  

 More effective parameters can be used for training 

ANFIS network. If another geometrical parameter such as 

vessel volume can be included in the training data set,  

the built ANFIS’s model could be scaled up.  
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