Polyethylene/Clay/Graphite Nanocomposites as Potential Materials for Preparation of Reinforced Conductive Natural Gas Transfer Pipes

Document Type : Research Article

Authors

1 Faculty of Chemical Engineering, Urmia University of Technology, Urmia, I.R. IRAN

2 Polymer Engineering Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, I.R. IRAN

Abstract

A series of high-density polyethylene/Cloisite 20A/graphite nanocomposites were prepared via melt blending for the production of polymeric pipes for natural gas transfer. The microstructural, mechanical, thermal, electrical and barrier properties of prepared nanocomposites were investigated. An intercalated morphology was observed for prepared nanocomposites. Improved mechanical properties e.g. over 148 % increase in Young’s modulus were observed by incorporating the nanoparticles into the polyethylene matrix. The thermal analysis showed that the melting point of polyethylene was slightly increased by incorporating both fillers, i.e. Cloisite 20A and graphite in it, and the crystallinity was depended on the type of filler. The results showed that the MFI values decreased by incorporating the fillers into the polyethylene matrix and further decreases were observed by increasing the contents of the filler. It was also found that a considerable amount of electrical conductivity is created in graphite loaded nanocomposites. The natural gas permeability investigations revealed of more than 51 % decrease in the permeability by incorporating 5 wt.% of Cloisite 20A to the polyethylene. It was concluded that the prepared nanocomposites due to their enhanced mechanical, thermal and barrier properties along with the conductive nature are excellent materials to be used in the production of polymeric pipes in natural gas distribution and transportation networks.

Keywords

Main Subjects


[1] Samimi A., Zarinabadi S., Application Polyurethane as Coating in Oil and Gas Pipelines, Int. J. Sci. Eng. Invest., 1: 43-45 (2012).
[2] Samimi V., Zarinabadi S., An Analysis of Polyethylene Coating Corrosion in Oil and Gas Pipelines, J. Am. Sci., 7: 1032-1036 (2011).
[3] Kiass N., Khelif R., Boulanouar L., Chaoui K., Experimental Approach to Mechanical Property Variability Through a High-Density Polyethylene Gas Pipe Wall, J. Appl. Polym. Sci., 97: 272-281 (2005).
[4] Laney P., “Use of Composite Pipe Materials in the Transportation of Natural Gas”, Idaho National Engineering and Environmental Laboratory Bechtel BWXT Idaho, LLC (2002).
[5] Pusz A., Michalik K., Fractographic Study of High-Density Polyethylene Gas Pipe Following Small Scale Steady State Test, J. Achiev. Mater. Manuf. Eng., 38: 131-138 (2010).
[6]  Hamouda H.B.H., Simoes-betbeder M., Grillon F., Blouet P., Billon N., Piques R., Creep Damage Mechanisms in Polyethylene Gas Pipes, Polymer, 42: 5425-5437 (2001).
[7] Rofooei F.R., Jalali H.H., Attari N.K.A., Kenarangi H., Samadian M., Parametric Study of Buried Steel
and High Density Polyethylene Gas Pipelines due to Oblique-Reverse Faulting
, Can. J. Civ. Eng., 42: 178-189 (2015).
[8] Talhi F.Z., Benaniba M.T., Belhaneche-Bensemra N., Massardier V., Comparison of Material Properties
in Butt Welds of Used and Unused Polyethylene Pipes for Natural Gas Distribution
, J. Polym. Eng., 37: 279-285 (2017).
[9] Gueugnaut D., Tessier M., Bouaffre R., Lopitaux A., Ultrasonic Phased Array Inspection of Electrofused Joints Implemented in Polyethylene Gas Piping Systems, J. Mater. Sci. Eng. A., 7: 68-81 (2017).
[10] Sarikanat M., Sever K., Erbay E., Guner F., Tavman I., Turgut A., Seki Y., Qzdemir I., Prepation and Mechanical Properties of Graphite Filled HDPE Nanocomposites, Arch. Mater. Sci. Eng., 50:120-124 (2011).
[11] Bafna A.A., “Polyethylene-clay Nanocomposites: Processing-Structure-Property Relationship”, PhD Thesis, University of Cincinnati, USA, (2004).
[12] Keith J.M., King J.A., Barton R.L., Electrical Conductivity Modeling of Carbon-Filled Liquid-Crystalline Polymer Composites, J. Appl. Polym. Sci., 102: 3293-3300 (2006).
[13] Ma P.C., Liu M. Y., Zhang H., Wang S.Q., Wang R., Wang K., Wong Y.K., Tang B.Z., Hong S.H.,
Paik K. W., Kim J.K., Enhanced Electrical Conductivity of Nanocomposites Containing Hybrid Fillers of Carbon Nanotubes and Carbon Black, Appl. Mater. Interfaces, 1:1090-1096 (2009).
[14] Osman M.A., Rupp J.E.P., Suter U.W., Gas Permeation Properties of Polyethylene-Layered Silicate Nanocomposites, J. Mater. Chem., 15: 1298-1304 (2005).
[15] Paydayesh A., Kokabi M., Highly Filled Organoclay/Phenolic Resin Nanocomposite as an Ablative Heat Shield Material, Iran. Polym. J., 24: 389-397 (2015).
[16] Nuhiji B., Attard D., Deveth A., Bungur J., Fox B., The Influence of Processing Techniques on the Matrix Distribution and Filtration of Clay in a Fibre Reinforced Nanocomposite, Compos. Part B., 84: 1-8 (2016).
[17] Mansoori Y., Roojaei K., Zamanloo M.R., Polymer-Clay Nanocomposites via Chemical Grafting of Polyacrylonitrile onto Cloisite 20A, Bulletin of Mater. Sci., 35: 1063-1070 (2012).
[18] Mansoori Y., Hemmati S., Eghbali P., Zamanloo M.R., Imanzadeh, Gh., Nanocomposite Materials Based on Isosorbide Methacrylate/Cloisite 20A, Polym. Inter., 62: 280-288 (2013).
[21] Zhang J., Jiang D. D., Wilkie C. A., Thermal and Flame Properties of Polyethylene and Polypropylenene Nanocomposites Based on Oligomerically-Modified Clay, Polym. Degrad. Stab., 91: 298-304 (2006).
[23] Sirousazar M., Kokabi M., Hassan Z.M., Bahramian A.R., Nanoporous Nanocomposite Hydrogels Composed of Polyvinyl Alcohol and Na-montmorillonite, J. Macromol. Sci. Part B Phys., 51:1583-1595 (2012).
[24] Mansoori Y., Atghia S.V., Zamanloo M.R., Imanzadeh Gh., Sirousazar M., Polymer-Clay Nanocomposites: Free-Radical Grafting of Polyacrylamide onto Organophilic Montmorillonite, Eur. Polym. J., 46: 1844-1853 (2010).
[25] Mansoori Y., Atghia S.V., Shah Sanaei S., Zamanloo M.R., Imanzadeh Gh., PMMA-Clay Nanocomposite Materials: Free-Radically Grafting of PMMA onto Organophilic Montmorillonite (20A), Macromol. Res., 18: 1174-1181 (2010).
[26] Mansoori Y., Roojaei K., Zamanloo M.R., Imanzadeh, Gh., Polymer-Clay Nanocomposites: Chemical Grafting of Polystyrene onto Cloisite 20A, Chin. J. Polym. Sci., 30: 815-823 (2012).
[27] Sirousazar M., Yari M., Achachlouei B.F., Arsalani J., Mansoori Y., Polypropylene/Montmorillonite Nanocomposites for Food Packaging, e-Polymers, No. 027 (2007).
[28] Attaran S.A., Hassan A., Wahit M. U., Effects of ENR and OMMT on Barrier and Tensile Properties of LDPE Nanocomposite Film, Iran. Polym. J., 24: 367-378 (2015).
[29] Ahmadi M., Jahanmardi R., Mohammadizade M., Preparation of PMMA/MWNTs Nanocomposite Microcellular Foams by In-situ Generation of Supercritical Carbon Dioxide, Iran. J. Chem. Chem. Eng. (IJCCE), 35: 63-72 (2016).
[30] Bayandori Moghaddam A., Hosseini S., Badraghi J., Banaei A., Hybrid Nanocomposite Based on CoFe2O4 Magnetic Nanoparticles and Polyaniline, Iran. J. Chem. Chem. Eng. (IJCCE), 29: 173-179 (2010).
[31] Zhang X., Wang J., Jia H., You S., Xiong X., Ding L., Xu Z., Multifunctional Nanocomposites Between Natural Rubber and Polyvinyl Pyrrolidone Modified Graphene, Compos. Part B., 84: 121-129 (2016).
[32] Parmoor S., Sirousazar M., Kheiri F., Kokabi M., Nanoclay and Cu Nanoparticles Loaded Polyethylene Nanocomposites for Natural Gas Transfer Applications, J. Macromol. Sci. Part B Phys., 55: 331-343 (2016).
[34] Chmelar J., Smolna K., Haskovcova K., Podivinska K., Marsalek J., Kosek J., Equilibrium Sorption of Ethylene in Polyethylene: Experimental Study and PC-SAFT Simulations, Polymer, 59: 270-277 (2015).
[35] Perthue A., Bussiere P.O., Baba M., Larche J.F.,  Gardette J. L., Therias S., Correlation Between Water Uptake and Loss of the Insulating Properties of PE/ATH Composites Used in Cables Applications, Polym. Degrad. Stab., 127: 79-87 (2016).