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ABSTRACT: This review gives an overview of the applications of ceria nanoparticles  

as inexpensive, efficient, reusable, and environmentally sustainable heterogeneous catalyst  

for the synthesis of a variety of key medicinal heterocyclic compounds with the emphasis  

on the mechanistic aspects of the reactions. Literature has been surveyed from 2005 to 2018. 
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INTRODUCTION 

Organic chemistry covers more than 12.5 million 

known carbon-containing compounds, about half of them 

contain heterocyclic systems [1]. In particular, 

heterocycles are common structural units of the vast 

majority of marketed drugs [2]. Of the top five small 

molecule drugs by US retail sales in 2014, four are 

contained at least one heterocyclic fragment in their 

structures (Fig. 1) [3]. Due to the diversity of this class of 

organic compounds in the therapeutic response profile, 

many researchers have been working to develop novel, 

practical and convenient protocols for their synthesis  

to improve energy consumption, atom economy and 

reaction yields [4].  

Multi-Component Reactions (MCRs) represent one of 

the most efficient one-pot processes for the synthesis  

3of heterocyclic compounds, in which more than three 

 

 

 

 

 

reactants are combined sequentially to construct 

complex organic molecules that contains almost all of 

the atoms of the starting materials [5]. In addition to 

avoidance of intermediates separation and purification 

processes, these reactions are generally environment 

and user friendly, time and energy saving, cost-efficient, 

and selective [6].  

In the recent past, nanoparticles have gained increasing 

attention in organic synthesis as reusable and 

environmentally sustainable catalysts [7]. The high surface 

to volume ratio and reactive morphology of nanoparticles 

made them very successful heterogeneous catalysts  

in multi-component reactions [8]. Among metal nanoparticles, 

ceria nanoparticles (CeO2-NPs) have recently received 

much attention because of their excellent catalytic 

activities, reusability, cost efficiency, non-toxicity, and 
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Fig. 1: Heterocycle molecule drugs present in the US top five prescription drugs and respective retail sales in 2014  

(in billions of U.S. $) [3]. 

 
versatility [9]. To the best of our knowledge, the 

significance and power of CeO2-NPs as heterogeneous 

catalyst in multi-component reactions has not been 

reviewed thus far. This review includes available 

information on using CeO2-NPs as catalyst for the 

synthesis of a board range of key medicinal heterocyclic 

compounds through multi-component reactions (Fig. 2). 

Herein, we have classified these reactions based on the 

desired products. Literature has been surveyed from 2005 

to 2018 and mechanistic aspects of the reactions are 

considered and discussed in detail. 

 

1,2,3-Triazoles 

1,2,3-triazole is a five-membered aromatic 

heterocycle with molecular formula C2H3N3, containing 

three nitrogen atoms in the 1,2,3-positions. This 

heterocycle is the base core for a number of drugs, such 

as voriconazole, fluconazole, isovuconazole, cefatrizine, 

and tazobactum [10] The synthesis of this framework 

strongly relies on click chemistry via reaction of 

aryl/alkyl halides, alkynes and NaN3 [11]. 

In 2014, Albadi, Shiran, and Mansournezhad reported 

the preparation of CuO–CeO2 nanocomposite through a 

co-precipitation of cerium and copper nitrates in water at 

room temperature [12]. The nanocomposite was used  

as an efficient heterogeneous catalyst for the click synthesis 

of biologically important 1,4-disubstituted-1,2,3-triazoles 

3 from benzyl and phenacyl bromides 1, phenyl 

acetylenes 2, and amberlite-supported azide in refluxing 

ethanol (Scheme 1). This CuO–CeO2 NPs-catalyzed 

azide‒alkyne [3 + 2] cycloaddition reaction tolerated  

a wide range of substituents on the benzyl and phenacyl 

bromides and was efficient for the use of different phenyl 

acetylenes with diverse steric and electronic properties. 

Moreover, the catalyst was reusable and preserved  

its catalytic activity after recycling for five runs  

of reaction. 

Inspired by this work, Amini and Chae along with 

their co-workers reported a CuNPs/CeO2 catalyzed 

preparation of 1,2,3-triazoles 6 starting from different 

benzyl halides 4, acetylenes 5, and sodium azide in water 

at 70 oC (Scheme 2) [13]. Under optimized conditions, 

the reaction tolerated both aromatic and aliphatic alkynes 

and gave corresponding 1,2,3-triazole products in good  

to excellent yields. 

 

PYRROLES 

The pyrrole framework is a privileged structure  

in chemistry due to its presence in a large number  

of molecules that exhibit a broad range of biological and 

pharmaceutical properties, such as anticancer, anxiolytic, 

antipsychotic, antiprotozoal, antimalarial, antibacterial, 

antifungal, and many more [14]. Due to these benefits,  

a number of synthetic methods have been developed 

 

O

OH F

Me

N

NH

O

OO
P

NH
PhO

O

Me

PrOi

O

Sovaldi (Antiviral)

7.9 U.S. $

N

N

O
H
N

Cl

Cl

O

Abilify (Antipsychotic)

7.8 U.S. $

N

S

O

N

HN

MeO

Me

OMe

Me

Nexium (Antiulcerant)

5.9 U.S. $

N

N N

Me Me

OHOH

HO

O

Me

SO O

Me
F

Crestor (Cholesterol regulator)

5.8 U.S. $



Iran. J. Chem. Chem. Eng. Nano-Ceria (CeO2): An Efficient Catalyst ... Vol. 38, No. 6, 2019 

 

Review Aticle                                                                                                                                                                          3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2: Some important heterocyclic compounds synthesized by ceria nanoparticles catalyzed multi-component reactions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 1: CuO-CeO2 NPs-catalyzed click synthesis of 1,4-disubstituted-1,2,3-triazoles 3 reported by Albadi. 
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Scheme 2: Amini's synthesis of 1,4-disubstituted-1,2,3-triazoles 6. 

 

to construct this biologically important heterocycle [15]. 

Synthesis of this key heterocycle by multi-component 

routes have attracted a large amount of attention due to 

their efficiency and intrinsic atom-economy [16]. 

In 2016, Samai and co-workers reported a three-

component reaction from nitrostyrenes 7, pentane-2,4-

dione 8 and anilines 9, catalyzed by nano-sized CeO2-

PVP (polyvinylpyrrolidone), for the synthesis of N-aryl 

pyrrole derivatives 10 [17]. The reactions were performed 

in the presence of 1.0 of ammonium acetate as an additive 

in refluxing toluene and generally provided highly 

substituted pyrroles 10 in good yields (Scheme 3).  

The catalyst could be efficiently reused for four catalytic 

cycles without significant loss of its activity. It is 

noteworthy that CeO2-P123 (triblock copolymer PEO20-

PPO70-PEO20) and CeO2-17R4 (reverse triblock 

copolymer PPO14-PEO24-PPO14) were also found to 

promote the reaction but in slightly lower yields.  

The authors explained this fact by the smaller size and greater 

surface area of CeO2-PVP compare to CeO2-17R4 and 

CeO2-P123. 

Very recently, the group of Wu developed a one-pot, 

four-component reaction between aromatic aldehydes 11, 

malononitrile 12, isocyanide 13, and 2-

mercaptobenzazoles 14 catalyzed by porous CeO2 

nanorod, for the synthesis of highly functionalized imino-

pyrrolidine-thione derivatives 15 (Scheme 4) [18]. 

Among the various solvents like MeCN, MeOH, EtOH, 

H2O, MeCN:H2O (1:1), MeCN:H2O (1:3), MeCN:H2O 

(3:1); MeCN:H2O (3:1) was the most efficient for this 

transformation. It should be mentioned that commercial 

CeO2, granular CeO2 NPs, fusiform CeO2 NPs and linear 

CeO2 NPs all could also be used to promote the reaction 

but afforded a lower yield of the final product. The results 

demonstrated that aromatic aldehydes bearing electron-

withdrawing groups gave higher yields than those bearing 

electron-donating groups and 2-mercaptobenzoxazole 

compare to 2-mercaptobenothiazolegave gave higher 

yield of desired product. The mechanism proposed for 

this transformation is summarized in Scheme 5 and starts 

with the Knoevenagel condensation between the aldehyde 11 

and the malononitrile 12, leading to the formation  

of a gem-dicyano olefin intermediate A, which reacts with 

isocyanide 13 to furnish intermediate B. Its reaction with 

thiol 14 yields intermediate C that undergoes Ugi–

Smiles-type rearrangement through intermediate D  

to the intermediate E. Finally, nucleophilic addition  

of the amino group onto the cyano group affords  

the expected product 15. 

 

PYRIDINES 

Pyridine is the most important six-membered 

heterocycles, present in more than one hundred currently 

marketed drugs [19]. Consequently, a number of methods 

have been reported for the synthesis of this biologically 

interesting N-heterocycle [20]. 

In 2013, Gawande and co-workers have synthesized  

a novel magnetite-based catalyst by coating Fe3O4 with 

CeO2 nanoparticles [21]. The catalyst successfully 

applied in the synthesis of functionalized  

1,4-dihydropyridines 19 by a one-pot four-component 

reaction of aromatic aldehydes 16, β-ketoesters 17, 5,5-

dimethyl-1,3-cyclohexanedione 18, and ammonium acetate 

in ethanol at room temperature (Scheme 6). The process 

showed very good functional group tolerance, including 

CN, OH, OMe, OPh, and Br functionalities that would 

allow further elaboration of the products. Importantly,  

the catalyst could be easily recycled from the reaction mixture 

by applying an external magnetic field without loss of 

catalytic activity within six cycles of reuse. Previously, 
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Scheme 3: Three-component pyrrole 10 synthesis from nitrostyrenes 7, pentane-2,4-dione 8 and anilines 9. 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 4: Porous CeO2 nanorod catalyzed four-component synthesis of imino-pyrrolidine-thione derivatives 15. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 5": Mechanism proposed to explain the imino-pyrrolidine-thione 15 synthesis. 
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the group of Naik reported the usefulness of free-ceria 

nanoparticles for the same reaction under solvent-free 

conditions [22]. 

Another environmentally benign procedure  

has been developed for the preparation of highly 

substituted 1,4-dihydropyridine derivatives 23, the condensation 

of 5,5-dimethyl-1,3-cyclohexanediones 20, 4-hydroxy-3-

methoxy-5-((4-substituted-phenyl)-diazenyl)-

benzaldehydes 21 and glycine 22 in the presence  

of Eu2O3 modified CeO2 nanoparticles (nano-CeO2-Eu2O3) 

as heterogeneous catalyst in water [23]. A library  

of (4-hydroxy-3-methoxy-5-(substituted-phenyldiazenyl)-

dihydropyridineacetic acids 23 were prepared by 

performing all the reactions for 2-2.5 h at 80 oC to give  

a 69–91% yield (Scheme 7). The author proposed 

mechanism of the condensation is given in Scheme 8. 

 

PYRIMIDINES 

Pyrimidine is one of the most important classes of 

heterocyclic compounds exhibiting remarkable 

pharmacological activities such as antineoplastic, 

anthelmintic, antibacterial, antifungal, antiviral, and 

antiparkinson activities [24, 25]. Many commercially 

available drugs, including minoxidil, flucytosine, 

doxazosin, complera, etravirine, and rilpivirine are derived 

from pyrimidine core entities. The synthesis of 

functionalized pyrimidines through multi-component 

reactions has been the object of a number of studies [26], 

and a variety of MCR-based methods are now available. 

In 2005, Sabitha and co-workers used ceria nanoparticles 

supported on poly(4vp-co-dvb) as a heterogeneous 

catalyst (10 mol%) for the preparation of  

3,4-dihydropyrimidin-2(1H)-ones 28 by a one-pot three-

component condensation of aldehydes 25, β-ketoesters 26 

and urea 27 in moderate to excellent yields in the most 

environmentally benign solvent, water [27]. Various 

aromatic/heteroaromatic/aliphatic aldehydes, 

aminopyridines, and β-ketoesters were used to establish 

the general applicability of this synthetic process. 

Interestingly, the electronic character of the substituents 

in aromatic aldehydes had a remarkably little effect on 

the facility of the reaction. As shown in Scheme 9  

both electron-rich and electron-poor aromatic aldehydes 

worked well under this reaction conditions.  

This methodology was also modified using β-diketone  

in place of the β-ketoester, providing corresponding 

product in good yield. The synthesis of  

3,4-dihydropyrimidin-2(1H)-ones using 22% Co/CeO2-ZrO2 

nanoparticles as the heterogeneous catalyst has also been 

described [28]. In 2013, Albadi and Mansournezhad 

reinvestigated the same reaction by using CuO-CeO2 

nanocomposite as a green recyclable catalyst under 

aerobic condition. A series of 3,4-dihydropyrimidin-

2(1H)-ones (10 examples) in excellent yields (up to 94%) 

with good functional group tolerance were obtained [29]. 

Recently, the group of Chandramouli used CeO2 NPs 

(7-9 nm) for the synthesis of triazolo/tetrazolo[1,5-

a]pyrimidine derivatives 32 via multi-component 

condensation reaction of aromatic aldehydes 29, 

benzoylacetonitrile 30, and 5-aminotriazole/5-

aminotetrazole 31 (Scheme 10) [30]. Water was found  

to be the best solvent for the reaction and, among several 

solvents tested, EtOH, MeCN, toluene, and dioxane were 

found to be less effective. The reaction did not give 

any desired product when neat condition was used. 

Apparently, the outcome of the condensation was also 

dependent on the reaction temperature, the best results 

were obtained by performing the process at 80 oC.  

The optimized conditions tolerated a variety of aromatic 

aldehydes containing both electron-donating and 

electron-withdrawing substituents at ortho-, meta- or 

para-positions and provided the expected fused 

pyrimidines in excellent yields. The mechanism 

suggested by the authors is depicted in Scheme 11,  

and involves an initial Knoevenagel condensation between 

aromatic aldehyde 29 and benzoylacetonitrile 30 to give 

the intermediate A, followed by Michael addition  

with 5-aminotriazole/5-aminotetrazole 31 to form 

intermediate B, which then undergoes intermolecular 

cyclization to afford intermediate C. Intermolecular 

dehydrogenation of this intermediate affords the final 

product 32 with the liberation of catalyst. 

 

CHROMENES 

The synthesis of functionalized 2-chromenes  

has attracted significant attention in recent years [31]  

as these classes of heterocyclic compounds constitute 

structural frameworks of several commercially available 

drugs and naturally occurring compounds [32]. 

In 2012, the group of Mishra synthesized a series of 

CeO2–CaO nanocomposite oxides containing 5, 10, 20, 50 

and 80 mol% of CeO2 by the amorphous citrate method [33]. 
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Scheme 6: Gawande’s synthesis of 1,4-dihydropyridines 19. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 7: Nano-CeO2-Eu2O3-catalyzed four-component synthesis of 1,4-dihydropyridine derivatives 23. 

 

The catalytic activity of these nanocomposites  

were investigated for aqueous phase one-pot synthesis of 

2-amino-2-chromenes 35 through three-component reaction 

between aromatic aldehydes 33, α-naphthol 34, and 

malononitrile 12. The results proved that among  

all the catalysts, the 20CeO2–CaO exhibited a higher catalytic 

activity in this reaction. Under the optimized conditions 

(20CeO2–CaO, H2O, 80 oC), various electron-neutral, 

electron-rich and electron-poor aromatic aldehydes 

afforded the corresponding 2-amino-2-chromenes in good 

to high yields (Scheme 12). The catalyst was reusable  

and could be recovered and reused for three reaction runs 

with negligible loss of performance. 

In a related investigation, Albadi and co-workers 

reported the use of CeO2-CuO nanocomposite as an 

efficient and recyclable catalyst for the synthesis of 

chromene derivatives 38 via the one-pot three-component 

reaction of aromatic aldehydes 36, resorcinol 37,  

and malononitrile 12 under solvent-free conditions 

(Scheme 13) [34]. The reaction was performed at 80 oC, 
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Scheme 8: Mechanism proposed for the reaction in Scheme 7. 
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28 developed by Sabitha. 
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Scheme 10: CeO2-NPs-catalyzed synthesis of triazolo/tetrazolo[1,5-a]pyrimidines 32 from aldehydes 29,  

benzoylacetonitrile 30, and 5-aminotriazole/5-aminotetrazole 31. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 11: Mechanistic explanation of the synthesis of triazolo/tetrazolo[1,5-a]pyrimidines 32. 

 

tolerated a variety of sensitive functional groups  

(e.g., nitro, cyano, amino, bromo, chloro, methoxy, and 

hydoxy), and generally provided the highly substituted 

chromenes 38 in high to excellent yields. 

Recently, the group of Chandramouli reported  

an efficient synthesis of a number of 2-amino-4-(4-hydroxy-

3-methoxy -5- (substituted-phenyl-diazenyl)-chromene-3-

carbonitrile derivatives 40 through nano-sized 

CeO2−ZrO2 catalyzed three-component reaction between 

1,3-dicarbonyl compounds 39, 4-hydroxy-3-methoxy-5-

(substituted-phenyl-diazenyl) benzaldehydes 21, and 

malononitrile 12 in water medium at room temperature 

(Scheme 14) [35]. Other metal oxide nanoparticles were 

also found to promote the reaction (e.g., Fe3O4, ZnO, 
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Scheme 12: Three-component synthesis of 2-amino-2-chromenes 35 catalyzed by 20CeO2–CaO nanocomposite. 

 

 

 

 

 

 

 

 

 

 

Scheme 13: Three-component syntheses of chromenes 38 reported by Albadi, catalysed by the CeO2-CuO nanocomposite. 

 

TiO2, CeO2); however, in lower yields. According to  

the author proposed mechanism, this reaction proceeded 

via a Knoevenagel condensation/Michael addition/ tautomerization/ 

intramolecular cyclization sequential process (Scheme 15). 

 

QUINOZALINES 

In 2014, Edayadulla and Lee explored the catalytic 

activity of CeO2 nanoparticles for the synthesis of 

quinoxalin-2-amines 44 via a three-component reaction 

between aliphatic aldehydes 41, 1,2-diamines 42, and 

isocyanides 43, in water at 80°C (Scheme 16) [36]. 

Benzaldehyde did not take part in the reaction and 

therefore no other aromatic aldehydes were examined  

in the protocol. A variety of 3,4-dihydroquinoxalin-2-amine 

derivatives were also successfully synthesized under 

standard conditions by reactions between ketones,  

1,2-diamines, and isocyanides. Good to high yields, short 

reaction times, relatively mild reaction conditions, and 

reusability of the catalyst were the advantages, mentioned 

for this green protocol. The mechanism for this 

quinoxaline synthesis was proposed to be initiated  

by the generation of the iminium ion A from CeO2NPs-

promoted condensation between aldehyde 41 and  

1,2-diamine 42 followed by nucleophilic addition of 

isocyanide 43 to this intermediate to give the intermediate 

B. intramolecular cycloaddition of B affords intermediate 

C, which undergoes isomerization to intermediate D. 

Finally, the oxidation of intermediate D affords  

the observed product 44 (Scheme 17). 

 

MISCELLANEOUS REACTIONS 

In 2013, Albadi and et al. have reported the synthesis 

of biologically important 4H-benzo[b]pyran derivatives 

47 under solvent-free conditions using CuO–CeO2 

nanocomposite as an efficient recyclable catalyst [37]. 

The mixture of aromatic aldehydes 45, 3-methyl-1-

phenyl-2-pyrazoline-5-one 46, and malononitrile 12 in 1 : 

1 : 1 molar ratios in the presence of catalytic amounts of 

CuO–CeO2, were heated at 80 oC to give the desired 

products in excellent yields (Scheme 18a). The reaction  

is noteworthy in that both electron-rich and electron-poor 

aromatic aldehydes are well tolerated. It should be noted 

that the catalyst could be easily recovered from  

the reaction mixture by a simple filtration, followed  

by washing with acetone to remove traces of organic 

compounds and drying. The separated nanocatalyst could 

be reused for at least eight successive times without 

tangible loss of its catalytic activity. A subsequent study 
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Scheme 14: Multicomponent synthesis of 2-amino-4-(4-hydroxy-3-methoxy-5-(substituted-phenyl-diazenyl)-chromene-3-

carbonitrile derivatives 40 catalyzed by zirconium doped ceria nanoparticles. 

 

by the same authors showed that 1,8-dioxooctahydroxanthenes 50 

could be prepared by three-component reaction of one 

molecule of aromatic aldehydes 48 with two molecules of 

1,3-dicarbonyl compounds 49 employing CuO–CeO2 

nanocomposite as the catalyst (Scheme 18b) [38].  

This protocol afforded the optimum yield in refluxing water. 

In 2015, Safaei-Ghomi and co-workers have described 

a synthesis of C-tethered bispyrazol-5-ols 54  

by using a five-component reaction of one molecule of 

aromatic aldehydes 51, two molecules of 

acetylenedicarboxylate 52, and two molecules of 

phenylhydrazine 53 at 70 oC in water (Scheme 19) [39]. 
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Scheme 15. Mechanistic proposal for the reaction in Scheme 14. 

 

 

 

 

 

 

 

 

 

 

Scheme 16: CeO2 nanoparticles-catalyzed three-component reaction between aldehydes 41, 1,2-diamines 42, and isocyanides 43. 

 

A variety of metal catalysts such as CuO, NiO, CaO, 

ZrO2, CeO2, Al2O3, and Nd2O3 have been tested for  

this multicomponent reaction. Nanosized ceria has been shown 

as an effective catalyst for this reaction. Under optimized 

conditions, the corresponding C-tethered bispyrazol-5-ols 

54 were obtained in high to excellent yields. The author 

proposed mechanism for this transformation is 

represented in Scheme 20. 

The synthesis of a range of cyclic β-aminoesters 58  

in good to high yields (up to 85 %) was also reported  

by the same research team through a simple and 

environmentally benign three-component reaction 

between primary amines 55, ethyl acetoacetate 56, and 

chalcones 57 using CeO2 NPs as an efficient 

heterogeneous catalyst in ethanol at room temperature 

(Scheme 21) [40]. 
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Scheme 17: Mechanism that accounts for the formation of quinoxalin-2-amines 44. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Scheme 18: Albadi's synthesis of (a) 4H-benzo[b]pyran derivatives 47; (b) 1,8-dioxooctahydroxanthenes 50. 

 

 

 

 

 

 

 

 

 

 

 

Scheme 19: Multicomponent synthesis of C-tethered bispyrazol-5-ols 54 using CeO2 nanoparticles as catalyst. 
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Scheme 20: Plausible mechanism for the synthesis of C-tethered bispyrazol-5-ols 54. 

 

 

 

 

 

 

 

 

 

 

Scheme 21: CeO2 NPs-catalyzed synthesis of cyclic β-aminoesters 58 by three-component reaction of primary amines 55,  

ethyl acetoacetate 56, and chalcones 57. 

 

 

 

 

 

 

 

 

 

 

 

Scheme 22: Four-component synthesis of spiro[indoline-3,4'-pyrano[2,3-c]pyrazole] derivatives 62 catalyzed by  

ceria nanoparticles. 

 

A four-component reaction of β-ketoesters 59, 

phenylhydrazines 60, malononitrile 12, isatins 61  

in the presence of 30 mol% of CeO2-NPs as catalyst  

has been reported by Shrestha et al. in water at 90 oC [41]. 

The protocol furnished the formation of highly functionalized 

and biologically interesting spiro[indoline-3,4'-pyrano[2,3-

c]pyrazole] derivatives 62 in good to excellent yields 

(Scheme 22). The prepared spirooxindoles exhibit potent 

antioxidant and antibacterial activities. Mechanistically, 

this reaction proceeded via a condensation/ Knoevenagel 

reaction/ Michael reaction/ intramolecular cyclization/ 

isomerization sequential process (Scheme 23). 

 

R1
NH2

O

OEt

O

O

R2 R3

HO

R1HN

OEtO

R3

R2

+ +
CeO2 NPs (4 mol%)

EtOH, r.t., 4.5-9 h

55 56 57

58

R1= H, nBu

R2= H, 4-Me, 4-Cl

R3= H, 4-Me, 4-F

9 examples (68-85%)

(average yield:75.5%)

 

R1

O

OMe

O

+

59

NHNH2

R2

CN

CN

+ + R3

N

R4

O

O

R3

N

R4

O

O

N

N

H2N

NC

R1

R2

60 12 61

62

CeO2 NPs (30 mol%)

H2O, 90 oC, 5-8 h

R1= Me, iPr, nPr, Ph

R2= H, 4-Me, 4-Cl, 2-Et, 2-Cl

R3= H, 4-Br, 5-OMe, 5-F, 5-Cl, 5-Br, 7-Cl

R4= H, Me, Ac, Ph

23 examples (73-94%)

(average yield: 86%)

  

C e O 2 

N 
N P h 

M e O 2 C 

O 

H 

A r O H 

N 
N P h 

C O 2 M e 

O 

A r N 
N P h 

M e O 2 C 

O H 

5 4 

5 3 

5 2 A B C 

D E F 

D 5 1 

C O 2 M e 

C O 2 M e 

P h H N 
N H 2 

M e O 

O 

N 
H 2 

C O 2 M e 
P h H N 

C e O 2 

M e O 

O 

N 
H 

C O 2 M e 
P h H N 

C e O 2 

N 
H 

N P h 

M e O C 
O H 

C O 2 M e 

N 
N P h 

C O 2 M e 

O H 

A r 

O 



Iran. J. Chem. Chem. Eng. Nano-Ceria (CeO2): An Efficient Catalyst ... Vol. 38, No. 6, 2019 

 

Review Article                                                                                                                                                                      15 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 23: Mechanism that accounts for the formation of spirooxindoles 62. 

 

CONCLUSIONS 

This Focus Review describes the recent advances  

on the synthesis of biologically interesting heterocyclic 

compounds using ceria nanoparticles as inexpensive, 

efficient, reusable, and environmentally sustainable 

heterogeneous catalyst. As illustrated, most of the 

reactions covered in this review have been performed  

in the most environmentally benign solvent, water, at room 

temperature. These results clearly show the potential 

application of CeO2NPs-catalyzed multi-component 

reactions in industry. Hopefully, multi-component 

reactions catalyzed by CeO2 NPs will be employed in the 

synthesis of complex natural and biologically important 

heterocyclic compounds in future studies. 
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