Nano-Ceria (CeO2): An Efficient Catalyst for the Multi-Component Synthesis of a Variety of Key Medicinal Heterocyclic Compounds

Document Type: Review Article

Authors

1 Department of Chemistry, Payame Noor University, 19395-4697 Tehran, I.R. IRAN

2 School of Engineering Science, College of Engineering, University of Tehran, P.O. Box 11365-4563 Tehran, I.R. IRAN

Abstract

This review gives an overview of the applications of ceria nanoparticles as inexpensive, efficient, reusable, and environmentally sustainable heterogeneous catalysts for the synthesis of a variety of key medicinal heterocyclic compounds with the emphasis on mechanistic aspects of the reactions. Literature has been surveyed from 2005 to 2018.

Keywords

Main Subjects


[1] Eicher T., Hauptmann S., Speicher A., “The Chemistry of Heterocycles”, Georg Thieme, Stuttgart (2003).

[2] Gomtsyan A., Heterocycles in Drugs and Drug Discovery, Chem. Heterocycl. Compd., 48: 7-10 (2012).

[3] Martins P., Jesus J., Santos S., Raposo L.R., Roma-Rodrigues, C., Baptista P.V., Fernandes, A.R., Heterocyclic Anticancer Compounds: Recent Advances and the Paradigm Shift Towards the Use of Nanomedicine''s Tool Box, Molecules, 20: 16852-16891 (2015).

[4] (a) Vessally E., Abdoli M., Oxime Ethers as Useful Synthons in the Synthesis of a Number of Key Medicinal Heteroaromatic Compounds, J. Iran. Chem. Soc., 13: 1235-1256 (2016);

    (b) Babazadeh M., Soleimani-Amiri S., Vessally E., Hosseinian A., Edjlali L., Transition Metal-Catalyzed [2+ 2+ 2] Cycloaddition of Nitrogen-Linked 1, 6-Diynes: A Straightforward Route to Fused Pyrrolidine Systems, RSC Adv., 7: 43716-43736 (2017);

      (c) Arshadi S., Vessally E., Edjlali L., Ghorbani-Kalhor E., Hosseinzadeh-Khanmiri, R., N-Propargylic β-Enaminocarbonyls: Powerful and Versatile Building Blocks in Organic Synthesis, RSC Adv., 7: 13198-13211 (2017);

     (d) Arshadi S., Vessally E., Sobati M., Hosseinian A., Bekhradnia A., Chemical Fixation of CO2 to N-Propargylamines: A Straightforward Route to 2-Oxazolidinones, J. CO2 Util., 19: 120-129 (2017);

      (e) Vessally E., Babazadeh M., Didehban K., Hosseinian A., Edjlali L., Intramolecular Cyclization of N-Arylpropiolamides: A New Strategy for the Synthesis of Functionalized 2-Quinolones, Cur. Org. Chem., 21: 2561-2572 (2017);

      (f) Vessally E., Hosseinian A., Edjlali L., Ghorbani-Kalhor E., Hosseinzadeh-Khanmiri R., Intramolecular Cyclization of N-Propargyl Anilines: A New Synthetic Entry Into Highly Substituted Indoles, J. Iran. Chem. Soc., 14: 2339-2353 (2017);

    (g) Vessally E., Hosseinian A., Edjlali L., Babazadeh M., Hosseinzadeh-Khanmiri R., New Strategy for the Synthesis of Morpholine Cores: Synthesis from N-Propargylamines, Iran. J. Chem. Chem. Eng. (IJCCE), 36: 1-13 (2017).

[5] (a) D''Souza D.M., Mueller T.J., Multi-Component Syntheses of Heterocycles by Transition-Metal Catalysis, Chem. Soc. Rev., 36: 1095-1108 (2007);

       (b) Jiang B., Rajale T., Wever W., Tu S.J., Li G., Multicomponent Reactions for the Synthesis of Heterocycles, Chem. Asian J., 5: 2318-2335 (2010).

      (d) Ibarra I.A., Islas-Jácome A., González-Zamora E., Synthesis of Polyheterocycles via Multicomponent Reactions, Org. Biomol. Chem., 16: 1402-1418 (2018);

      (e) Ramazani A., Reza Kazemizadeh A., Preparation of Stabilized Phosphorus Ylides via Multicomponent Reactions and their Synthetic Applications, Curr. Org. Chem., 15: 3986-4020 (2011);

      (f) Reza Kazemizadeh A., Ramazani A., Synthetic Applications of Passerini Reaction, Curr. Org. Chem., 16: 418-450 (2012);

      (g) Marjani A.P., Khalafy J., Chitan M., Mahmoodi S., Microwave-Assisted Synthesis of Acridine-1,8(2H,5H)-Diones via a One-Pot, Three Component Reaction, Iran. J. Chem. Chem. Eng. (IJCCE), 36: 1-6 (2017(.

[6] Bhaskaruni S.V., Maddila S., Gangu K.K., Jonnalagadda S.B., A Review on Multi-Component Green Synthesis of N-Containing Heterocycles Using Mixed Oxides as Heterogeneous Catalysts, Arab. J. Chem., (2017).

        DOI: 10.1016/j.arabjc.2017.09.016.

[7] (a) Vessally E., Babazadeh M., Hosseinian A., Arshadi S., Edjlali L., Nanocatalysts for Chemical Transformation of Carbon Dioxide, J. CO2 Util., 21: 491-502 (2017);

     (b) Didehban K., Vessally E., Hosseinian A., Edjlali L., Khosroshahi E.S., Nanocatalysts for C–Se Cross-Coupling Reactions, RSC Adv., 8: 291-301 (2018);

    d) Ramazani A., Asiabi P.A., Aghahosseini H., Gouranlou F., Review on the Synthesis and Functionalization of SiO2 Nanoparticles as Solid Supported Catalysts, Curr. Org. Chem., 21: 908-922 (2017);

     (e) Aghahosseini H., Ramazani A., Gouranlou F., Woo J.S., Nanoreactors Technology in Green Organic Synthesis, Curr. Org. Synth., 14: 810-864 (2017);

     (f) Nakhaei A., Davoodnia A., Yadegarian S., An Efficient Green Approach for the Synthesis of Fluoroquinolones as Potential Antibacterial Using Nano Zirconia Sulfuric Acid as Highly Efficient Recyclable Catalyst, Iran. J. Chem. Chem. Eng. (IJCCE), 37(3): 33-42 (2018).

[8] Shirini F., Abedini M., Application of Nanocatalysts in Multi-Component Reactions, J. Nanosci. Nanotechnol., 13: 4838-4860 (2013).

[9] (a) Juárez R., Concepción P., Corma A., García H., Ceria Nanoparticles as Heterogeneous Catalyst for CO2 Fixation by ω-Aminoalcohols, ChemComm., 46: 4181-4183 (2010);

      (b) Leyva-Pérez A., Cómbita-Merchán D., Cabrero-Antonino J.R., Al-Resayes S.I., Corma A., Oxyhalogenation of Activated Arenes with Nanocrystalline Ceria, ACS Catal, 3: 250-258 (2013);

     (c) Shelkar R., Sarode S., Nagarkar J., Nano Ceria Catalyzed Synthesis of Substituted Benzimidazole, Benzothiazole, and Benzoxazole in Aqueous Media, Tetrahedron Lett, 54: 6986-6990 (2013).

[10] Dheer D., Singh V., Shankar R., Medicinal Attributes of 1, 2, 3-Triazoles: Current Developments, Bioorganic. Chem., 71: 30-54 (2017).

[11] (a) Agalave S.G., Maujan S.R., Pore V.S., Click Chemistry: 1, 2, 3‐Triazoles as Pharmacophores, Chem. Asian J., 6: 2696-2718 (2011);

       (b) Jalani H.B., Karagöz A.Ç., Tsogoeva S.B., Synthesis of Substituted 1, 2, 3-Triazoles Via Metal-Free Click Cycloaddition Reactions and Alternative Cyclization Methods, Synthesis, 49: 29-41(2017);

      (c) Saeidian H., Sadighian H., Abdoli M., Sahandi M., Versatile and Green Synthesis, Spectroscopic Characterizations, Crystal Structure and DFT Calculations of 1, 2, 3‒Triazole‒Based Sulfonamides, J. Mol. Struct., 1131: 73-78 (2017).

[13] Amini M., Hassandoost R., Bagherzadeh M., Gautam S., Chae K.H. Copper Nanoparticles Supported on CeO2 as an Efficient Catalyst for Click Reactions of Azides with Alkynes, Catal. Commun., 85: 13-16 (2016).

[14] Bhardwaj V., Gumber D., Abbot V., Dhiman S., Sharma P., Pyrrole: A Resourceful Small Molecule in Key Medicinal Hetero-Aromatics, RSC Adv., 5: 15233-15266 (2015).

[16] (a) Estevez V., Villacampa M., Menendez J.C., Multicomponent Reactions for the Synthesis of Pyrroles, Chem. Soc. Rev., 39: 4402-4421 (2010);

      (b) Estévez V., Villacampa M., Menéndez J.C., Recent Advances in the Synthesis of Pyrroles by Multicomponent Reactions, Chem. Soc. Rev., 43: 4633-4657 (2014);

      (c) Saeidian H., Abdoli M., Salimi R., One-Pot Synthesis of Highly Substituted Pyrroles Using Nano Copper Oxide as an Effective Heterogeneous Nanocatalyst, C. R. Chim., 16: 1063-1070 (2013).

[18] Wang Y., Ge W., Fang Y., Ren X., Cao S., Liu G., Li M., Xu J., Wan Y., Han X., Porous CeO2 Nanorod-Catalyzed Synthesis of Poly-Substituted Imino-Pyrrolidine-Thiones, Res. Chem. Intermed., 43: 631-640 (2017).

[19] (a) Goetz A.E., Garg N.K., Regioselective Reactions of 3, 4-Pyridynes Enabled by the Aryne Distortion Model, Nature Chem., 5: 54-60 (2013);

       (b) Baumann M., Baxendale I.R., An Overview of the Synthetic Routes to the Best Selling Drugs Containing 6-Membered Heterocycles, Beilstein J. Org. Chem., 9: 2265-2319 (2013).

[20] (a) Hill M.D., Recent Strategies for the Synthesis of Pyridine Derivatives, Chem. Eur. J., 16: 12052-12062 (2010);

       (b) Vessally E., Hosseinian A., Edjlali L., Bekhradnia A., Esrafili M.D., New Page to Access Pyridine Derivatives: Synthesis from N-Propargylamines, RSC Adv., 6: 71662-71675 (2016).

[21] Gawande M.B., Bonifácio V.D., Varma R.S., Nogueira I.D., Bundaleski N., Ghumman C.A.A., Teodoro O.M., Branco P.S., Magnetically Recyclable Magnetite–Ceria (Nanocat-Fe-Ce) Nanocatalyst–Applications in Multicomponent Reactions under Benign Conditions, Green Chem., 15: 1226-1231 (2013).

[24] Sharma V., Chitranshi N., Agarwal A.K., Significance and Biological Importance of Pyrimidine in the Microbial World, Int. J. Med. Chem., (2014) DOI: 10.1155/2014/202784.

[25] Selvam T.P., James C.R., Dniandev P.V., Valzita S.K., A Mini Review of Pyrimidine and Fused Pyrimidine Marketed Drugs, Res. Pharm., 2: 1-9 (2015).

[26] Gore R.P., Rajput A.P., A review on recent Progress in Multicomponent Reactions of Pyrimidine Synthesis, Drug Inv. Today, 5: 148-152 (2013).

[27] Sabitha G., Reddy K.B., Yadav J., Shailaja D., Sivudu K.S., Ceria/vinylpyridine Polymer Nanocomposite: an Ecofriendly Catalyst for the Synthesis of 3, 4-dihydropyrimidin-2 (1H)-ones, Tetrahedron Lett., 46: 8221-8224 (2005).

[28] Biklarian H., Behbahani F.K., Fakhroueian Z., 22% Co/CeO2-ZrO2-catalyzed Synthesis of 1, 2, 3, 4-tetrahydro-2-pyrimidinones and-thiones, Lett. Org. Chem, 9:580-584 (2012).

[31] (a) Ballini R., Bosica G., Conforti M.L., Maggi R., Mazzacani A., Righi P., Sartori G., Three-Component Process for the Synthesis of 2-amino-2-Chromenes in Aqueous Media, Tetrahedron, 57, 1395-1398 (2001);

      (b) Maggi R., Ballini R., Sartori G., Sartorio R., Basic Alumina Catalysed Synthesis of Substituted 2-amino-2-chromenes via Three-Component reaction, Tetrahedron Lett., 45: 2297-2299 (2004);

      (c) Sabitha G., Bhikshapathi M., Nayak S., Srinivas R., Yadav J., Triton B Catalyzed Three‐Component, One‐Pot Synthesis of 2‐amino‐2‐chromenes at Ambient Temperature, J. Heterocycl. Chem., 48: 267-271 (2011).

[34] Albadi J., Razeghi A., Mansournezhad A., Azarian Z., CuO-CeO2 Nanocomposite Catalyzed Efficient Synthesis of Aminochromenes, JNSC, 3: 85- (2013).

[35] Sagar Vijay Kumar P., Suresh L., Vinodkumar T., Reddy B.M., Chandramouli G., Zirconium Doped Ceria Nanoparticles: An Efficient and Reusable Catalyst for a Green Multicomponent Synthesis of Novel Phenyldiazenyl–chromene Derivatives Using Aqueous Medium, ACS Sustain. Chem. Eng., 4: 2376-2386 (2016).

[37] Albadi J., Mansournezhad A., Derakhshandeh Z., CuO–CeO2 Nanocomposite: a Highly Efficient Recyclable Catalyst for the Multicomponent Synthesis of 4H-benzo [b] pyran Derivatives, Chin. Chem. Lett., 24: 821-824 (2013).

[38] Albadi J., Mansournezhad A., Abbaszadeh H., CuO‐CeO2 Nanocomposite: A Highly Efficient Recyclable Catalyst for the Green Synthesis of 1,8‐dioxooctahydroxanthenes in Water, J. Chin. Chem. Soc., 60: 1193-1196 (2013).

[39] Safaei-Ghomi J., Asgari-Keirabadi M., Khojastehbakht-Koopaei B., Shahbazi-Alavi H., Multicomponent Synthesis of C-Tethered Bispyrazol-5-ols Using CeO2 Nanoparticles as an Efficient and Green Catalyst, Res. Chem. Intermed., 42, 827-837 (2016).

[40] Saraei-Ghomi J., Kalhor S., Shahbazi-Alavi H., Asgari-Kheirabadi M., Three-Component Synthesis of Cyclic β-aminoesters Using CeO2 Nanoparticles as an Efficient and Reusable Catalyst, Turk. J. Chem., 39, 843-849 (2015).

[41] Shrestha R., Sharma K., Lee Y.R., Wee Y.J., Cerium Oxide-catalyzed Multicomponent Condensation Approach to Spirooxindoles in Water, ‎Mol. Divers., 20, 847-858 (2016).