Tailoring the Characteristics of Poly (phenylene-ether-ether) sulfone Membrane for Efficient Glycerol/Biodiesel Separation

Document Type: Research Article

Authors

1 Department of Energy, Materials and Energy Research Center (MERC), P.O. Box 31787-316 Karaj, I.R. IRAN

2 Department of Chemical Engineering, Faculty of Engineering, Arak University, P.O. Box 38156-88349 Arak, I.R. IRAN

3 Membrane Research Centre, Department of Chemical Engineering, Razi University, P.O. Box 67149 Kermanshah, I.R. IRAN

Abstract

Poly (phenylene-ether-ether) sulfone membrane was fabricated and characterized by efficient glycerol/biodiesel separation produced from waste cooking oils trans-esterification. The membrane preparation was processed by phase inversion technique. The morphology, Physico-chemical properties and separation behavior of membranes were studied at various PPEES concentration. A uniform surface was observed for the prepared membranes by scanning electron microscopy. AFM images exhibited that surface roughness was decreased from 9.24 to 7.26 nm by the increase of PPEES concentration from 12 to 15 %wt. Similar trend was found for the membrane Flux, water content, and porosity by the increase of PPEES content ratio up to 15 %wt. The efficiency of glycerol removal and mechanical strength was also improved by the increase of polymeric matrix concentration.

Keywords

Main Subjects


[1] Shuit S.H., Ong Y.T., Lee K.T., Subhash B., Tan S.H., Membrane Technology as a Promising Alternative in Biodiesel Production: A Review, Biotechnol. Adv., 30: 1364-1380 (2012).

[2] Atadashi I.M., Abdul-Aziz A.R., Sulaiman N.M.N., The Effects of Water on Biodiesel Production and Refining Technologies: A Review, Renewable Sustainable Energy Rev., 16: 3456-3470 (2012).

[3] Atadashi I.M., Aroua M.K., Abdul Aziz A.R., Biodiesel Separation and Purification: A Review, Renewable Sustainable Energy Rev., 36: 437-443 (2011).

[4] José Alves M., Nascimento S.M., Pereira I.G., Martins M.I., Cardoso M.R.V.L., Reis M., Biodiesel Purification Using Micro and Ultrafiltration Membranes, Renewable Energy, 58: 15-20 (2013).

[5] Wang Y., Wang X., Liu Y., Ou S., Tan Y., Tang S., Refining of Biodiesel by Ceramic Membrane Separation, Fuel Process. Technol., 90: 422-427 (2009).

[6] Saleh J., Dube M. A., Tremblay A.Y., Separation of Glycerol from FAME Using Ceramic Membranes, Fuel Process. Technol., 92: 1305-1310 (2011).

[7] Saleh J., Marc A. Y.T., Dubé A., Glycerol Removal from Biodiesel Using Membrane Separation Technology, Fuel Process. Technol., 89: 2260-2266 (2010).

[8] Jakeria M.R., Haseeb A.S.M.A., Influence of Different Factors on the Stability of Biodiesel: A Review, Renewable Sustainable Energy Rev., 30: 154-163 (2014).

[9] Othman R., Mohammad A.W., Ismail M., Salimon J., Application of Polymeric Solvent Resistant Nanofiltration Membranes for Biodiesel Production, J. Membr. Sci., 348: 287-297 (2010).

[10] Berrios M., Martin M.A., Chica A.F., Martín A., Purification of Biodiesel from Used Cooking Oils, Appl. Energy, 88: 3625-363 (2011).

[11] He H.Y., Gu X., Zhu S.L., Comparison of Membrane Extraction with Traditional Extraction Methods for Biodiesel Production, J. Am. Oil Chem. Soc., 83(5): 457-460 (2006).

[12] Koudzari Farahani S., Halek F., Hosseini S.M., Physico-Chemical Characterization, Morphology and Performance of Polyethersulfone Based Membrane to Glycerol Removal from Produced Biodiesel Through Waste Coocking Oils Trans-Esterification, Korean J. Chem. Eng., 32(10): 2097-2102 (2015).

[13] Halek F., Koudzari Farahani S., Hosseini S.M., Fabrication of Poly (ether sulfone) Based Mixed Matrix Membranes Modified by TiO2 Nanoparticles for Purification of Biodiesel Produced from Waste Coocking Oils, Korean J. Chem. Eng., 33(2): 629-637 (2016).

[14] Peyravi M., Rahimpour A., Jahanshahi M., Developing Nanocomposite PI Membranes: Morphology and Performance to Glycerol Removal at the Downstream Processing of Biodiesel Production, J. Membr. Sci., 473: 72-84 (2015).

[15] Gomes M.C.S., Pereira N.C., Davantel de Barros S.T., Separation of Biodiesel and Glycerol Using Ceramic Membranes, J. Membr. Sci., 352: 271-276 (2010).

[16] Roy S., Ntim S. A., Mitra S., Sirkar K. K., Facile Fabrication of Superior Nanofiltration Membranes from Interfacially Polymerized CNT-polymer Composites, J. Membr. Sci., 375: 81-87 (2011).

[17] Madaeni S. S., Akbarzadeh Arbatan T., Preparation and Characterization of Microfiltration Membrane Embedded with Silver Nano-Particles, Iran. J. Chem. Chem. Eng. (IJCCE), 29(4): 105-111 (2010).

[18] Bondioli P., Bella L.D., An Alternative Spectrophotometric Method for the Determination of Free Glycerol in Biodiesel, Eur. J. Lipid Sci. Technol., 107: 153-157 (2005).

[19] Hosseini S. M., Jeddi F., Nemati M., Madaeni S. S., Moghadassi A. R., Electrodialysis Heterogeneous Anion Exchange Membrane Modified by PANI/MWCNT Composite Nanoparticles: Preparation, Characterization and Ionic Transport Property in Desalination, Desalination, 341: 107-114 (2014).

[20] Li X., Wang Z., Lu H., Zhao C., Na H., Zhao C., Electrochemical Properties of Sulfonated PEEK Used for Ion Exchange Membranes, J. Membr. Sci., 254: 147-155 (2005).

[21] Hosseini S. M., Madaeni S. S., Khodabakhshi A. R., Heterogeneous Cation Exchange Membrane: Preparation, Characterization and Comparison of Transport Properties of Mono and Bivalent Cations, Sep. Sci. Technol., 45: 2308-2321 (2010).

[22] Sata T., “Ion Exchange Membranes: Preparation, Characterization, Modification and Application”, The Royal Society of Chemistry, Cambridge, United Kingdom, (2004).

[23] Tanaka Y., “Ion Exchange Membranes: Fundamentals and Applications”, Membrane Science and Technology Series, Vol. 12, 2nd ed., Elsevier, Netherlands, (2012).

[24] Wu G., Gan S., Cui L., Xu Y., Preparation and Characterization of PES/TiO2 Composite Membranes,  Appl. Surf. Sci., 254: 7080-7086 (2008).

[25] Wienk I.M., Boom R.M., Beerlage M.A.M., Recent Advances in the Formation of Phase Inversion Membranes Made from Amorphous or Semi Crystalline Polymers, J. Membr. Sci., 113: 361-366 (1996).

[26] Sotto A., Boromand A., Zhang R., Luis P., Arsuag J.M., Kim J., Van der Bruggen B.,  Effect of Nanoparticle Aggregation at Low Concentrations of TiO2 on the Hydrophilicity, Morphology, and Fouling Resistance of PES–TiO2 Membranes, J. Colloid Interface Sci., 363: 540-550 (2011).

[27] Rahimpour A., Jahanshahi M., Khalili S., Mollahosseini A., Zirepour A., Rajaeian B., Novel Functionalized Carbon Nanotubes for Improving the Surface Properties and Performance of Polyethersulfone (PES) Membrane, Desalination, 286: 99-107 (2012).

[28] Vatanpour V., Madaeni S.S., Moradian R., Zinadini S., Astinchap B., Novel Antibifouling Nanofiltration Polyethersulfone Membrane Fabricated from Embedding TiO2 Coated Multiwalled Carbon Nanotubes, Sep. Purif. Technol., 90: 69-82 (2012).

[29] Zendehnam A., Mokhtari S., Hosseini S.M., Rabieyan M., Fabrication of Novel Heterogeneous Cation Exchange Membrane by use of Synthesized Carbon Nanotubes-co-Copper Nanolayer Composite Nanoparticles: Characterization, Performance in Desalination, Desalination, 347: 86-93 (2014).

[30] Hosseini S. M., Madaeni S.S., Khodabakhshi A. R., Preparation and Characterization of PC/SBR Heterogeneous Cation Exchange Membrane Filled with Carbon Nano-Tubes, J. Membr. Sci., 362: 550-559 (2010).

[31] Hosseini S.M., Koranian P., Gholami A., Madaeni S.S., Moghadassi A.R., Sakinejad P.,Khodabakhshi A. R., Fabrication of Mixed Matrix Heterogeneous Ion Exchange Membrane by Multi Walled Carbon Nano Tubes: Eectrochemical Characterization and Transport Properties of Mono and Bivalent Cations, Desalination, 329: 62-67 (2013).

[32] Hosseini S.M., Madaeni S.S., Khodabakhshi A.R., Preparation and Characterization of ABS/HIPS Heterogeneous Anion Exchange Membrane Filled with Activated Carbon, J. Appl. Polym. Sci., 118: 3371-3383 (2010).