Effect of 1,2,3-Trichloropropane as Tri-Functional Monomer on Thermophysical Properties of Poly(ethylene tetrasulfide)

Document Type: Research Article

Authors

Department of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, I.R. IRAN

Abstract

In this study, the effect of 1,2,3-trichloropropane (TCP) as trifunctional monomer on thermophysical properties of synthesized poly(ethylene tetrasulfide) (PETS) is investigated. To this end, different amounts of TCP (0-40 mol. % of halide-containing monomer) were incorporated into the structure of polysulfide polymer via interfacial condensation polymerization. Measurement of gel, fraction showed that by the introduction of only 10 mol. % of TCP, synthesized structure is almost crosslinked. The X-Ray Diffraction (XRD) results revealed that all samples are semi-crystalline whereas the crystallinity of samples strongly depends on the amount of TCP. All samples showed a glass transition temperature (Tg) less than 0 °C followed by melting temperature (Tm). Higher amountof crosslinking monomer resulted in higher Tg while Tm and heat of fusion (ΔHm) were reduced. According to ThermoGravimetric Analysis (TGA) results, all samples exhibited a two-stage degradation process. Although, the introduction of 10 mol. % TCP into the structure of PETS resulted in lower thermal stability of obtained polymer, adding higher amounts of TCP led to the higher thermal stability of polymers.

Keywords

Main Subjects


        DOI: https://doi.org/10.1039/C5RA24574E.
[4] Pirayesh A., Salami-Kalajahi M., Roghani-Mamaqani H., Dehghani E., Amine-Modified Graphene Oxide
as Co-Curing Agent of Epoxidized Polysulfide Prepolymer: Thermophysical and Mechanical Properties of Nanocomposites
, Diamond Relat. Mater., 86: 109-116 (2018).
[5] Lafont U., Moreno-Belle C., van Zeijl H., van der Zwaag S., Self-Healing Thermally Conductive Adhesives, J. Intell. Mater. Syst. Struct., 25: 67-74 (2014).
[6] Marques E. A. S., da Silva L. F. M., Banea M. D., Carbas R. J. C., Adhesive Joints for Low- and High-Temperature Use: An Overview, J. Adhes., 91: 556-585 (2015).
[7] Pirayesh A., Salami-Kalajahi M., Roghani-Mamaqani H., Najafi F., Polysulfide Polymers: Synthesis, Blending, Nanocomposites and Applications, Polym. Rev., 59: 124-148 (2019).
[8] Farajpour T., Bayat Y., Keshavarz M. H., Zanjirian E., Investigating the Effect of Modifier Chain Length
on Insulation Properties of Polysulfide Modified Epoxy Resin
, Iran. J. Chem. Chem. Eng. (IJCCE), 33: 37-44 (2014).
[9] Abdouss M., Farajpour T., Derakhshani M., The Effect of Epoxy-Polysulfide Copolymer Curing Methods on Mechanical-Dynamical and Morphological Properties, Iran. J. Chem. Chem. Eng. (IJCCE), 30(4): 37-44 (2011).
        DOI: https://doi.org/10.1002/adv.22117.
[11] Zhang Y., Peng Y., Wang Y., Li J., Li H., Zeng J., Wang J., Hwang B. J., Zhao J., High Sulfur-Containing Carbon Polysulfide Polymer as a Novel Cathode Material for Lithium-Sulfur Battery, Sci. Rep., 7: 11386 (2017).
[12] Kariminejad B., Salami-Kalajahi M., Roghani-Mamaqani H., Thermophysical Behaviour of matrix-Grafted Graphene/Poly(ethylene tetrasulphide) Nanocomposites, RSC Adv., 5: 100369-100377 (2015).
        DOI: https://doi.org/10.1039/C5RA20254J.
[13] Kariminejad B., Salami-Kalajahi M., Roghani-Mamaqani H., Noparvar-Qarebagh A., Effect of Surface Chemistry of Graphene and Its Content on the Properties of Ethylene Dichloride- and Disodium Tetrasulfide-Based Polysulfide Polymer nanocomposites, Polym. Compos., 38: E515-E524 (2017).
        DOI: https://doi.org/10.1002/pc.23857.
[14] Moqadam S., Salami-Kalajahi M., Halogenated Sunflower Oil as a Precursor for Synthesis of Polysulfide Polymer, e-Polymers, 16: 33-39 (2016).
[15] Sheydaei M., Kalaee M. R., Allahbakhsh A., Moradi-e-Rufchahi E. O., Samar M., Moosavi G., Sedaghat N., Synthesis and Characterization of Poly(p-xylylene tetrasulfide) via Interfacial Polycondensation in the Presence of Phase Transfer Catalysts, Des. Monom. Polym., 16: 191-196 (2013).
[16] Kazerouni S. S., Kalaee M., Sharif F., Mazinani S., Synthesis and Characterization of Poly(ethylene tetrasulfide)/Graphene Oxide Nanocomposites by in Situ Polymerization Method, J. Sulfur Chem., 37: 328-339 (2016).
[17] Allahbakhsh A., Sheydaei M., Mazinani S., Kalaee M., Enhanced Thermal Properties of Poly(ethylene tetrasulfide) via Expanded Graphite Incorporation by in Situ Polymerization Method, High Perform. Polym., 25: 576-583 (2013).
[18] Gao W., Bie M., Liu F., Chang P., Quan Y., Self-Healable and Reprocessable Polysulfide Sealants Prepared from Liquid Polysulfide Oligomer and Epoxy Resin, ACS Appl. Mater. Interfaces, 9: 15798-15808 (2017).
[19] Bandyopadhyay A., Valavala P.K., Clancy T.C., Wise K.E., Odegard G.M., Molecular Modeling of Crosslinked Epoxy Polymers: The Effect of Crosslink Density on Thermomechanical Properties, Polymer, 52: 2445-2452 (2011).
[20] AbdolahZadeh M., Esteves A. C. C., van der Zwaag S., Garcia S.J., Healable Dual Organic–Inorganic Crosslinked Sol–Gel Based Polymers: Crosslinking Density and Tetrasulfide Content Effect, J. Polym. Sci. Polym. Chem., 52: 1953-1961 (2014).
        DOI: https://doi.org/10.1002/pola.27200.
[21] Lim J., Jung U., Joe W. T., Kim E. T., Pyun J., Char K., High Sulfur Content Polymer Nanoparticles Obtained from Interfacial Polymerization of Sodium Polysulfide and 1,2,3-Trichloropropane in Water, Macromol. Rapid Commun., 36: 1103-1107 (2015).
[22] Sheydaei M., Jabari H., Dehaghi H. A.-A., Synthesis and Characterization of Ethylene-Xylene-Based Polysulfide Block-Copolymers Using the Interfacial Polymerization Method, J. Sulfur Chem., 37: 646-655 (2016).
        DOI: https://doi.org/10.1039/C5RA01444A.
[25] Khonakdar H. A., Morshedian J., Wagenknecht U., Jafari S.H., An Investigation of Chemical crosslinking Effect on Properties of High-Density Polyethylene, Polymer, 44: 4301-4309 (2003).
[26] Ungár T., Microstructural Parameters from X-Ray Diffraction Peak Broadening, Scr. Mater., 51: 777-781 (2004).
[27] Safajou-Jahankhanemlou M., Abbasi F., Salami-Kalajahi M., Synthesis and Characterization of Thermally Expandable PMMA-Based Microcapsules with Different Cross-Linking Density, Colloid Polym. Sci., 294: 1055-1064 (2016).
[28] Adelnia H., Gavgani J. N., Riazi H., Bidsorkhi H. C., Transition Behavior, Surface Characteristics and Film Formation of Functionalized Poly(methyl methacrylate-co-butyl acrylate) Particles, Prog. Org. Coat., 77: 1826-1833 (2014).
[29] Moqadam S., Salami-Kalajahi M., Mahdavian M., Synthesis and Characterization of Sunflower Oil-based Polysulfide Polymer/Cloisite 30B Nanocomposites, Iran. J. Chem. Chem. Eng. (IJCCE), 37(1): 185-192 (2018).
        DOI: https://doi.org/10.1021/ie303063b.
[31] Haghighi A. H., Sheydaei M., Allahbakhsh A., Ghatarband M., Hosseini F.S., Thermal Performance of Poly(ethylene disulfide)/Expanded Graphite Nanocomposites, J. Therm. Anal. Calorim., 117: 525-535 (2014).
[33] Levchik G.F., Si K., Levchik S.V., Camino G., Wilkie C.A., The Correlation between Cross-Linking and Thermal Stability: Cross-Linked Polystyrenes and Polymethacrylates, Polym. Degrad. Stab., 65: 395-403 (1999).