Green Removal of Toxic Th(IV) by Amino-Functionalized Mesoporous TiO2-SiO2 Nanocomposite

Document Type: Research Article


1 Materials and Nuclear Fuel Research School, Nuclear Science and Technology Research Institute, P.O. Box 14395-836 Tehran, I.R. IRAN

2 Department of Chemistry, East Tehran Branch, Islamic Azad University, Tehran, I.R. IRAN

3 Department of Chemistry, East Tehran Branch, Islamic Azad University, Tehran, I.R. IRAN


Mesoporous TiO2-SiO2 nanocomposite (TS) was synthesized via sol-gel method and Amino-functionalized using 3-(aminopropyl) triethoxysilane. prepared amino-functionalized TiO2-SiO2 (NH2TS) was evaluated for eliminating radioactive Th(IV) ion in comparison with (TS). The prepared nanocomposites were characterized using FT-IR,  XRD, DSC-TGA, SEM, EDS, BET, and BJH analyses. DSC and TGA analyses revealed that the total organic content of the NH2TS was at about 4%. According to the XRD patterns, synthesized nanocomposites exhibited only the crystalline anatase phase, and the sizes of the anatase crystallites in the prepared TS and NH2TS calculated to be 10.4 and 14.1nm, respectively. Moreover, the pore diameters of TS and NH2TS estimated to be 4.65 and 3.632 nm according to their BJH plot. The kinetic data of Th(IV) uptake process on both of two nanocomposites corresponded well to the pseudo-second-order equation. Adsorption thermodynamic parameters including the standard enthalpy, entropy, and Gibbs free energy revealed that the ion exchange reactions on both of NH2TS and TS nanocomposites were endothermic and spontaneous processes. The results indicated that NH2TS exhibited higher adsorption affinity toward Th(IV) compared to TS. Moreover, based on the Langmuir model, the maximum adsorption capacity of NH2TS nanocomposite towards the Th (IV) was found to be 1000 mg/g.


Main Subjects

[1] Nilchi A., Shariati Dehaghan T., Rasouli Garmarodi S., Kinetics, Isotherm and Thermodynamics for Uranium and Thorium Ions Adsorption from Aqueous Solutions by Crystalline Tin Oxide Nanoparticles, Desalination, 321: 67–71 (2013).

[2] Thorium Dioxide [3] Youngju J., Seok K., Soo-Jin P., Ji Man K., Application of Polymer-modified Nanoporous Silica to Adsorbents of Uranyl Ions, Colloi. Surf. A., 313–314:162–166 (2008).

[4] Kadirvelu K.; Thamaraiselvi K.; Namasivayam C., Removal of Heavy Metals from Industrial Wastewaters by Adsorption onto Activated Carbon Prepared from an Agricultural Solid Waste, Bioresour. Technol., 76: 63-65 (2001).

[5] Shao D.D., Jiang Z.Q., Wang X.K., Li J.X., Meng Y.D., Plasma induced Grafting Carboxymethyl Cellulose on Multiwalled Carbon Nanotubes for the Removal of UO22+ from Aqueous Solution, J. Phys. Chem. B., 113: 860–864 (2009).

[6] Yang X., Li J.X., Wen T., Ren X.M., Huang Y.S., Wang X.K., Adsorption of Naphthalene and Its Derivatives on Magnetic Graphene Composites and the Mechanism Investigation, Colloid. Surf. A., 422:118–125 (2013).

[7] Li J.X., Guo Z.Q., Zhang S.W., Wang X.K., Enrich and Seal Radionuclides in Magnetic Agarose Microspheres, Chem. Eng. J., 172: 892–897 (2011).

[8] Chen H., Shao D., Li J., Wang X., The Uptake of Radionuclides from Aqueous Solution by poly(amidoxime) Modified Reduced Graphene Oxide, Chem. Eng. J., 254: 623–634 (2014).

[11] Xu P., Zeng G.M., Huang D.L., Feng C.L., Hu S., Zhao M.H., Lai C., Wei Z., Huang C., Xie G.X., Liu  Z.F., Use of Iron Oxide Nanomaterials in Wastewater Treatment., Sci. Total. Environ., 424: 1-10 (2012).

[12] Nilchi A., Rasouli Garmarodi S., Janitabar Darzi S., Adsorption Behavior of Nano Sized Sol-Gel Derived TiO2-SiO2 Binary Oxide in Removing Pb2+ Metal Ions, Separ. Sci. Technol., 45: 801–808 (2010).

[13] Nilchi A., Janitabar Darzi S., Mahjoub A.R., Rasouli Garmarodi S., New TiO2/SiO2 Nanocomposites-Phase Transformations and Photocatalytic Studies, Colloid. Surf. A., 361: 25–30 (2010).

[14] Peshev P., Stambolova I., Vassilev S., Stefanov P., Blaskov V., Starbova K., Starbov N., pyrolysis Deposition of Nanostructured Zirconia Thin Films, Mater. Sci. Eng. B., 97:106–110 (2003).

[15] Marcoux L., Florek J., Kleitz F., Critical assessment of the Base Catalysis Properties of Amino-Functionalized Mesoporous Polymer-SBA-15 Nanocomposites, App. Catal. A. Gen., 504:493-503 (2015).

[16] Guillet-Nicolas R., Marcoux L., Kleitz F., Insights into Pore Surface Modification of Mesoporous Polymer–Silica Composites: Introduction of Reactive Amines, New. J. Chem., 34:355–366 (2010).

[17] Zelenak V., Halamova D., Gaberova L., Bloch E., Llewellyn P., Amine-Modified SBA-12 Mesoporous Silica for Carbon Dioxide Capture: Effect of Amine Basicity on Sorption Properties, Micropor. Mesopor. Mat., 116:358–364 (2008).

[18] Song B.Y., Eom Y., Lee T.G., Removal and Recovery of Mercury from Aqueous Solution Using Magnetic Silica Nanocomposites, Appl. Surf. Sci., 257:4754–4759 (2011).

[21] Manzano M., Aina V., Arean C.O., Balas F., Cauda V., Colilla M., Delgado M.R., Vallet-Reg M.,
Studies on MCM-41 Mesoporous silica for Drug Delivery: Effect of Particle Morphology and Amine Functionalization, Chem. Eng. J., 137:30–37 (2008).

[22] Liu H, Zhang L, Seaton N.A. Analysis of Sorption Hysteresis in Mesoporous Solids Using a Pore Network Model, J. Colloid. Interf. Sci., 156: 285-293 (1993).

[24] Kruk M., Jaroniec M., Gas Adsorption Characterization of Ordered Organic−Inorganic Nanocomposite Materials, Chem Mater., 13:3169–3183 (2001).

[25] Li W.J., Tao Z.Y., Comparative Study on Th(IV) Sorption on Alumina and Silica from Aqueous Solutions,
J. Radioanal. Nucl. Chem., 254:187–192 (2002).

[27] Anirudhan T.S., Sreekumari S.S., Adsorptive Removal of Heavy Metal Ions from Industrial Effluents Using Activated Carbon Derived from Waste Coconut Buttons, J. Environ. Sci., 23: 1989–1998 (2011).

[28] Baes C.F., Mesmer R.E., “Hydrolysis of Cations”, Jahn Wiley & Sons Inc., New-York (1976).

[29] Martins R.J.E., Pardo R., Boaventura R.A.R., Cadmium(II) and Zinc(II) Adsorption by the Aquatic Moss Fontinalis Antipyretica: Effect of Temperature, pH and Water Hardness, Water. Res., 38:693-699 (2004).

[30] Echeverria J.C., Zarranz I., Estella J., Garrido J.J., Simultaneous Effect of pH, Temperature, Ionic Strength, and Initial Concentration on the Retention of Lead on Illite, Appl. Clay. Sci., 30: 103-115 (2005).

[33] Cortes-Martínez R., Olguin M.T., Solache-Rios M., Cesium Sorption by Clinoptilolite-Rich Tuffs
in Batch and Fixed-Bed Systems
, Desalination., 258: 164–170 (2010).

[34] Nilchi A., Rasouli Garmarodi S., Janitabar Darzi S., Removal of Arsenic from Aqueous Solutions
by an Adsorption Process with Titania–Silica Binary Oxide Nanoparticle Loaded Polyacrylonitrile Polymer
J. Appl. Polym. Sci., 119: 3495–3503 (2011).

[35] Wu L., Ye Y., Liu F., Tan C., Liu H., Wang S., Wang J., Yi W., Wu W., Organo-Bentonite-Fe3O4 Poly (Sodium Acrylate) Magnetic Superabsorbent Nanocomposite: Synthesis, Characterization, and Thorium(IV) Adsorption, Appl. Clay. Sci., 83–84: 405–414 (2013).

[36] Da Costa A.C.A., Leite S.G.F., Metals Biosorption by Sodium Alginate Immobilized Chlorella Homosphaera Cells, Biotechnol. Lett., 13: 559–562 (1991).

[38] Ahmadi S.J., Akbari N., Shiri-Yekta Z., Mashhadizadeh M.H., Hosseinpour M., Removal
of Strontium Ions from Nuclear Waste Using Synthesized Mno2-Zro2 Nano-Composite by Hydrothermal Method in Supercritical Condition
, Korean. J. Chem. Eng., 32: 478-485 (2014).

[39] Wu Y., Kim S.Y., Tozawa D., Ito T., Tada T., Hitomi K., Kuraoka E., Yamazaki H., Ishii K., Equilibrium and Kinetic Studies of Selective Adsorption and Separation for Strontium Using Dtbu- CH18C6 Loaded Resin, J. Nucl.Sci. Technol., 49:320-327 (2012).

[40] Humelnicu D., Blegescu C., Ganju D., Removal of Uranium(VI) and Thorium(IV) Ions from Aqueous Solutions by Functionalized Silica: Kinetic and Thermodynamic Studies, J. Radioanal. Nucl. Chem., 299:1183–1190 (2014).

[41] Khazaei Y., Faghihian H., Kamali M., Removal of Thorium from Aqueous Solutions by Sodium ClinoptiloliteJ. Radioanal. Nucl. Chem., 289:529-536 (2011).

[42] Savva I., Efstathiou M., Krasia-Christoforou T., Pashalidis I., Adsorptive Removal of U(VI) and Th(IV) from Aqueous Solutions Using Polymer-Based Electrospun PEO/PLLA Fibrous Membranes. J. Radioanal. Nucl. Chem., 298:1991-1997 (2013).

[43] Gok C., Turkozu D.A., Aytas S., Removal of Th(IV) Ions from Aqueous Solution Using Bi-Functionalized Algae-Yeast Biosorbent, J. Radioanal. Nucl. Chem., 287(2): 533–541 (2011).

[44] Akkaya R., Ulusoy U., Adsorptive Features of Chitosan Entrapped in Polyacrylamide Hydrogel
for Pb2+, UO22+, and Th4+
., J. Hazard. Mater., 151(2–3): 380–388 (2008).

[46] Yu S.M., Chen C.L., Chang P.P., Wang T.T., Lu S.S., Wang X.K., Adsorption of Th(IV) Onto Al-Pillared Rectorite: Effect of Ph, Ionic Strength, Temperature, Soil Humic Acid and Fulvic Acid, Appl. Clay Sci., 38(3–4): 219-226 (2008).

[47] Chen C.L., Li X.L., Zhao D.L., Tan X.L., Wang X.K., Adsorption Kinetic, Thermodynamic and Desorption Studies of Th(IV) On Oxidized Multi-Wall Carbon Nanotubes, Colloid. Surf. A-Physicochem. Eng. Aspects, 302 (1-3): 449–454 (2007).

Volume 39, Issue 2 - Serial Number 100
March and April 2020
Pages 191-202