Fabrication and Characterization of Proton Conductive Membranes Based on Poly(methyl methacrylate-co-maleic anhydride)

Document Type: Research Article

Authors

1 Department of Chemistry, Malek-Ashtar University of Technology, Shahin-Shahr, P.O. Box 83145-115 Isfahan, I.R. IRAN

2 Department of Chemical Engineering, Kermanshah University of Technology, 67178 Kermanshah, I.R. IRAN

Abstract

In this study, proton conductive composite membranes were produced by using a poly(methylmethacrylate-co-maleic anhydride) (P(MMA-co-MAH)) copolymer and phosphotungstic Acid (PWA) as an additive of the proton conductive agent. P(MMA/MAH) 70/30, 50/50, and 30/70 were synthesized using a free radical polymerization reaction. PWA with a concentration of 2% was added to improve the performance of proton exchange membranes. Composite membranes of P(MMA30-co-MAH70)/PWA had the highest performance, and this improvement was attributed to the presence of MAH and PWA. By increasing the ratio of MMA:MAH from 30/70 to 70/30, thermal stability, ion exchange capacity and proton conductivity of membranes enhanced up to 310°C, 0.85 meq/g, and 5.77 mS/cm, respectively. Moreover, the addition of PWA into the membrane matrix improved the membrane characteristics so that thermal stability, ion exchange capacity, and proton conductivity increased to 317°C, 0.98 meq/g, and 14.42 mS/cm. The synthesized copolymer offered the required properties to be used for the fabrication of a proton conductive membrane.

Keywords

Main Subjects


[2] Yue W.-W., Xiang T., Zhao W.-F., Sun S.-D., Zhao C.-S., Preparation and Characterization of pH-Sensitive Polyethersulfone Membranes Blended with Poly (methyl methacrylate-co-maleic anhydride) Copolymer, Sep. Sci. Technol., 48: 1941-1953 (2013).
[3] Bhavani P., Sangeetha D., Blend Membranes for Direct Methanol and Proton Exchange Membrane Fuel Cells, Chin. J. Polym. Sci., 30: 548-560 (2012).
[4] Shi J., Composite Membranes for Proton Exchange Membrane Fuel Cells, Wright State University, 836 (2008).
[5] Askari M.M., Pourhossaini. M R, and Solimannia. S, Polyvinyl Alcohol-Sulfonated Polyethersulfone Blend for Application in Proton-Exchange Membrane, Iran. J. Polym. Sci. Technol, 29(5): 403-412 (2016).
[6] Gomes F.N., Mendes F.M., Souza M.M., Synthesis of 5-Hydroxymethylfurfural from Fructose Catalyzed by Phosphotungstic Acid, Catal. Today, 279: 296-304 (2017).
[7] Kim Y., Shanmugam S., Polyoxometalate–Reduced Graphene Oxide Hybrid Catalyst: Synthesis, Structure, and Electrochemical Properties, ACS Appl. Mater. Interfaces, 5(22): 12197-12204 (2013).
[8] Zhou Y., Yang J., Su H., Zeng J., Jiang S.P., Goddard W.A., Insight Into Proton Transfer in Phosphotungstic Acid Functionalized Mesoporous Silica-Based Proton Exchange Membrane Fuel Cells, J. Am. Chem. Soc., 136(13): 4954-4964 (2014).
[10] Xiao L., Li Z., Dong J., Liu L., Shang L., Zhang X., Zhang H., Ao Y., Dong A., Fabrication of Poly (methyl methacrylate-co-maleic anhydride) Copolymers and Their Kinetic Analysis of the Thermal Degradation, Colloid. Polym. Sci., 293(10): 2807-2813 (2015).
[11] Huang Y., Ma X., Liang G., Wang S., Gel Polymer Electrolyte Based on the Synthesized co-Polymer of Poly (methyl methacrylate-maleic anhydride), Clays Clay Miner., 43(3): 405-413 (2008).
[12] Jo C., Pugal D., Oh I.-K., Kim K.J., Asaka K., Recent Advances in Ionic Polymer–Metal Composite Actuators and Their Modeling and Applications, Prog. Polym. Sci., 38(7): 1037-1066 (2013).
[13] Hasani-Sadrabadi M.M., Dashtimoghadam E., Ghaffarian S.R., Sadrabadi M. H. H., Heidari  M., Moaddel H., Novel High-Performance Nanocomposite Proton Exchange Membranes Based on Poly (ether sulfone), Renewable Energy, 35(1): 226-231 (2010).
[15] Boztuğ A., Basan S., Modification and Characterization of Maleic Anhydride-Styrene-Methyl Metacrylate Terpolymer Using Various Alcohols, Designed Monomers and Polymers, 9: 617-626 (2012).
[16] Karakus G., Zengin H.B., Polat Z.A., Yenidunya A.F., Aydin S., Cytotoxicity of Three Maleic Anhydride Copolymers and Common Solvents Used for Polymer Solvation, Polym. Bull., 70: 1591-1612 (2013).
[17] Chitanu G., Rinaudo M., Desbrières J., Milas M., Carpov A., Behavior of Nonalternating Maleic Acid Copolymers in Aqueous Solution, Langmuir, 15(12): 4150-4156 (1999).
[19] Nasirtabrizi, M.H., et al., Synthesis and Chemical Modification of Maleic Anhydride Copolymers with Phthalimide Groups, Hung. J. Ind. Chem., 4(1): 11 (2013).
[22] Madaeni S.S., Amirinejad S., Amirinejad M., Phosphotungstic Acid Doped Poly (vinyl alcohol)/poly (ether sulfone) Blend Composite Membranes for Direct Methanol Fuel Cells, J. Membr. Sci., 380: 132-137 (2011).
[24] Pedroza O.J., Dutra Filho J.C., Picciani P.H., Dias M.L., Morphology and Proton Conductivity of Composite Membranes Based on Poly (styrene sulfonic acid–maleic anhydride) Nanofibers Prepared by Electrospinning, Solid State Ionics, 21: 755-764 (2015).
[26] Atabaki F., Abdolmaleki A., Barati A., Free Radical Copolymerization of Methyl Methacrylate and N-2-methyl-4-nitro-phenylmaleimide: Improvement in the T g of PMMA, Colloid. Polym. Sci., 294: 455-462 (2016).
[27] Punuch W., Okhawilai M., Rimdusit S., Property Enhancement of Polybenzoxazine Modified with Maleic Anhydride, J. Met., Mater. and Miner. (JMMM), 24 (2014).
[28] Wang Y., Ma X., Zhang Q., Tian N., Synthesis and Properties of Gel Polymer Electrolyte Membranes Based on Novel Comb-Like Methyl Methacrylate Copolymers, J. Membr. Sci., 349: 279-286 (2010).
[29] Madaeni S., Rafiee E., Seyedzadeh Z., Barzin J., Effect of Dodeca-Tungstophosphoric Acid on Morphology and Performance of Polyethersulfone Membrane for Gas Separation, J. Polym. Eng., 30:109-134 (2010).
[31] Lafuente E., Piñol M., Martínez M.T., Muñoz E., Oriol L., Serrano J.L., Preparation and Characterization of Nematic Polyazomethine/Single‐Walled Carbon Nanotube Composites Prepared by in Situ Polymerization, J. Polym. Sci., Part A: Polym. Chem., 47: 2361-2372 (2009).
[35] Li H., et al., A Novel Sulfonated Poly(ether ether ketone) and Cross-Linked Membranes for Fuel Cells, J. Power Sources, 195(19): 6443-6449 (2010).
[36] Madaeni S.S., Amirinejad S., Amirinejad M., Phosphotungstic Acid Doped Poly (vinyl alcohol)/poly (ether sulfone) Blend Composite Membranes for Direct Methanol Fuel Cells, J. Member. Sci, 380:132-137 (2011).
[37] Peighambardoust S.J., Rowshanzamir S., Amjadi M., Review of the Proton Exchange Membranes for Fuel Cell Applications, Int. J. Hydrogen Energy, 35(17):9349-9384 (2010).
[38] Jiang, J. and O.M. Yaghi, Brønsted Acidity in Metal–Organic Frameworks. Chem. Rev., 115(14): 6966-6997 (2015).
[39] Yamada M., Honma I., Heteropolyacid-Encapsulated Self-Assembled Materials for Anhydrous proton-Conducting Electrolytes, J. Phys. Chem. B, 110(41): 20486-20490 (2006).
[40] Kim D.-J., et al., Sulfonated Poly (arylene ether sulfone)/Laponite-SO3H Composite Membrane for Direct Methanol Fuel Cell, J. Ind. Eng. Chem., 18(1): 556-562 (2012).
[41] Lupatini K.N., Schaffer J.V., Machado B., Silva E.S., Ellendersen L.S., Muniz G.I., Ferracin R.J., Alves H.J., Development of Chitosan Membranes as a Potential PEMFC Electrolyte, Journal of Polymers and the Environment, 1-9 (2018).