Facile Synthesis and Electrochemical Performance of Graphene-Modified Cu2O Nanocomposite for Use in Enzyme-Free Glucose Biosensor

Document Type: Research Article

Authors

1 Department of Materials Science and Engineering, School of Engineering, Shiraz University, Shiraz 7134851154, I.R. IRAN

2 Department of Chemistry, Seoul National University, Seoul, KOREA

Abstract

Graphene-modified Cu2O nanocomposite was synthesized under facile microwave irradiation of an aqueous solution and has been investigated as an enzyme-free glucose biosensor. Morphology and crystal structure of the graphene-modified Cu2O nanocomposite were investigated by using electron microscopy and X-Ray Diffraction (XRD) analyses. Also, the electrochemical performance of the graphene-modified Cu2O nanocomposite for the measurement of glucose concentration in alkaline media was evaluated by using cyclic voltammetry and chronoamperometric measurements. The electrochemical studies revealed that the graphene-modified nanocomposite electrode exhibited a high performance for non-enzymatic oxidation of glucose with a desirable sensitivity. Also, the fabricated graphene-modified biosensor exhibited a wide linear response for glucose detection in the concentrations ranges from 2 µM to 12 mM and a desirable detection limit of 2 µM. Also, the graphene-modified Cu2O nanocomposite provided an appropriate selective response for glucose detection in the presence of high concentrations of ascorbic acid and dopamine.

Keywords

Main Subjects


[1] Wang J., Electrochemical Glucose Biosensors, Chem. Rev., 108(2): 814-825 (2008).

[2] Hsu Y.-W., T.-K. Hsu C.-L. Sun Y.-T. Nien N.-W. Pu, M.-D. Ger, Synthesis of CuO/Graphene Nanocomposites for Nonenzymatic Electrochemical Glucose Biosensor Applications, Electrochim Acta., 82: 152-157 (2012).

[3] Heller A., Feldman B., Electrochemical Glucose Sensors and Their Applications in Diabetes Management, Chem. rev., 108(7): 2482-2505 (2008).

[4] Solnica B., Kusnierz-Cabala B., Slowinska-Solnica K., Witek P., Cempa A., Malecki M.T., Evaluation of the Analytical Performance of the Coulometry-Based Optium Omega Blood Glucose Meter, Journal of Diabetes Science and Technology, 5(6): 1612-1617 (2011).

[5] Tanaka T., Shutto E., Mizoguchi T., Fukushima K., Coulometric Titration of D (+)-Glucose Using Its Enzymatic Oxidation, Anal. Sci., 17(2): 277-280 (2001).

[6] Steiner M.-S., Duerkop A., Wolfbeis O.S., Optical Methods for Sensing Glucose, Chem. Soc. Rev., 40(9): 4805-4839 (2011).

[7] Gill R., Bahshi L., Freeman R., Willner I., Optical Detection of Glucose and Acetylcholine Esterase Inhibitors by H2O2Sensitive CdSe/ZnS Quantum Dots, Angew. Chem., 120(9): 1700-1703 (2008).

[8] Thévenot D.R., Toth K., Durst R.A., Wilson G.S., Electrochemical Biosensors: Recommended Definitions and Classification, Anal. Lett., 34(5): 635-659 (2001).

[9] Chen C., Xie Q., Yang D., Xiao H., Fu Y., Tan Y., Yao S., Recent Advances in Electrochemical Glucose Biosensors: A Review, Rsc Adv., 3(14): 4473-4491 (2013).

[10] Deng C., Chen J., Chen X., Xiao C., Nie L., Yao S., Direct Electrochemistry of Glucose Oxidase and Biosensing for Glucose Based on Boron-Doped Carbon Nanotubes Modified Electrode, Biosens. Bioelectron., 23(8): 1272-1277 (2008).

[11] Ansari A.A., Alhoshan M., Alsalhi M., Aldwayyan A., Nanostructured Metal Oxides Based Enzymatic Electrochemical Biosensors," Biosensors". (2010), InTech.

[12] Toghill K.E., Compton R.G., Electrochemical Non-Enzymatic Glucose Sensors: A Perspective and an Evaluation, Int. J. Electrochem., Sci., 5(9): 1246-1301 (2010).

[13] Yang M., Yang Y., Liu Y., Shen G., Yu R., Platinum Nanoparticles-Doped Sol–Gel/Carbon Nanotubes Composite Electrochemical Sensors and Biosensors, Biosens. Bioelectron., 21(7): 1125-1131 (2006).

 

[14] Sun Y., Buck H., Mallouk T.E., Combinatorial Discovery of Alloy Electrocatalysts for Amperometric Glucose Sensors, Anal. Chem., 73(7): 1599-1604 (2001).

[15] Jena B.K., Raj C.R., EnzymeFree Amperometric Sensing of Glucose by Using Gold Nanoparticles, Chemistry–A Eur. J., 12(10): 2702-2708 (2006).

[16] Chen J., Zhang W.-D., Ye J.-S., Nonenzymatic Electrochemical Glucose Sensor Based on MnO 2/MWNTs Nanocomposite, Electrochem. Commun., 10(9): 1268-1271 (2008).

[17] Novoselov K.S., Geim A.K., Morozov S.V., Jiang D., Zhang Y., Dubonos S.V., Grigorieva I.V., Firsov A.A., Electric Field Effect in Atomically Thin Carbon Films, Science, 306(5696): 666-669 (2004).

[18] Mohd Yazid S.N.A., Md Isa I., Abu Bakar S., Hashim N., Ab Ghani S., A Review of Glucose Biosensors Based on Graphene/Metal Oxide Nanomaterials, Anal. Lett., 47(11): 1821-1834 (2014).

[19] Chung R.-J., Wang A.-N., Liao Q.-L., Chuang K.-Y., Non-Enzymatic Glucose Sensor Composed of Carbon-Coated Nano-Zinc Oxide, Nanomaterials., 7(2): 36 (2017).

[20] Arya S.K., Saha S., Ramirez-Vick J.E., Gupta V., Bhansali S., Singh S.P., Recent Advances in ZnO Nanostructures and Thin Films for Biosensor Applications, Anal. Chim. Acta., 737: 1-21 (2012).

[21] Lu N., Shao C., Li X., Miao F., Wang K., Liu Y., CuO Nanoparticles/Nitrogen-Doped Carbon Nanofibers Modified Glassy Carbon Electrodes for Non-Enzymatic Glucose Sensors with Improved Sensitivity, Ceramics International, 42(9): 11285-11293 (2016).

[22] Foroughi F., Rahsepar M., Hadianfard M.J., Kim H., Microwave-Assisted Synthesis of Graphene Modified CuO Nanoparticles for Voltammetric Enzyme-Free Sensing of Glucose at Biological pH Values, Microchim. Acta., 185(1): 57 (2018).

[23] Luo Z.J., Han T.T., Qu L.L., Wu X.Y., A Ultrasensitive Nonenzymatic Glucose Sensor Based on Cu2O Polyhedrons Modified Cu Electrode, Chinese Chemical Letters, 23(8): 953-956 (2012).

[25] He G., Tian L., Cai Y., Wu S., Su Y., Yan H., Pu W., Zhang J., Li L., Sensitive Nonenzymatic Electrochemical Glucose Detection Based on Hollow Porous NiO, Nanoscale. Res. Lett., 13(1): 3-      (2018).

[26] Pal N., Saha B., Kundu S.K., Bhaumik A., Banerjee S., A Highly Efficient Non-Enzymatic Glucose Biosensor Based on a Nanostructured NiTiO3/NiO Material, New J. of Chem., 39(10): 8035-8043 (2015).

[27] Nontawong N., Amatatongchai M., Jarujamrus P., Tamuang S., Chairam S., Non-Enzymatic Glucose Sensors for Sensitive Amperometric Detection Based on Simple Method of Nickel Nanoparticles Decorated on Magnetite Carbon Nanotubes Modified Glassy Carbon Electrode, Int. J. Electrochem. Sci., 12: 1362-1376 (2017).

[28] Zhang H., Zhu Q., Zhang Y., Wang Y., Zhao L., Yu B., OnePot Synthesis and Hierarchical Assembly of Hollow Cu2O Microspheres with NanocrystalsComposed Porous Multishell and Their GasSensing Properties, Ad. Func. Mater., 17(15): 2766-2771 (2007).

[29] Gou L., Murphy C.J., Solution-Phase Synthesis of Cu2O Nanocubes, Nano. Lett., 3(2): 231-234 (2003).

[30] Orel Z.C., Anzlovar A., Drazic G., Zigon M., Cuprous Oxide Nanowires Prepared by an Additive-Free Polyol Process, Cryst. Growth. Des., 7(2): 453-458 (2007).

[31] Zhang X., Wang G., Wang Q., Zhao L., Wang M., Fang B., Cupreous Oxide Nanobelts as Detector for Determination of l-Tyrosine, Mater. Sci. Eng. B., 156(1): 6-9 (2009).

[32] Zhang X., Wang G., Gu A., Wu H., Fang B., Preparation of Porous Cu2O Octahedron and Its Application as L-Tyrosine Sensors, Solid. State. Commun., 148(11): 525-528 (2008).

[33] Zhang X., Wang G., Zhang W., Wei Y., Fang B., Fixure-Reduce Method for the Synthesis of Cu2O/MWCNTs Nanocomposites and Its Application as Enzyme-Free Glucose Sensor, Biosens. Bioelectron., 24(11): 3395-3398 (2009).

[34] Novel N., Gas Sensor Based on Cuprous Oxide Thin Films Shishiyanu, Sergiu T.; Shishiyanu, Teodor S.; Lupan, Oleg I, Sensor. Actuat. B-Chem. 113: 468-476 (2006).

 

[36] Shao Y., Wang J., Wu H., Liu J., Aksay I.A., Lin Y., Graphene Based Electrochemical Sensors and Biosensors: A Review, Electroanal., 22(10): 1027-1036 (2010).

[37] Rahsepar M., Pakshir M., Piao Y., Kim H., Synthesis and Electrocatalytic Performance of High Loading Active PtRu Multiwalled Carbon Nanotube Catalyst for Methanol Oxidation, Electrochim. Acta., 71: 246-251 (2012).

[38] Rahsepar M., Pakshir M., Nikolaev P., Safavi A., Palanisamy K., Kim H., Tungsten Carbide on Directly Grown Multiwalled Carbon Nanotube as a co-Catalyst for Methanol Oxidation, Appl. Catal. B- Environ., 127: 265-272 (2012).

[40] Rahsepar M., Pakshir M., Piao Y., Kim H., Preparation of Highly Active 40 wt.% Pt on Multiwalled Carbon Nanotube by Improved Impregnation Method for Fuel Cell Applications, Fuel. Cells., 12(5): 827-834 (2012).

[41] Sayah A., Capacitance Properties of Electrochemically Synthesised Polybithiophene-Exfoliated Graphene Composite Films, Iran. J. Chem. Chem. Eng., (IJCCE), 38 (3): 203-210 (2019).

[42] Tavakolyan pour F., Waqifhusain S., Rastegar H., Saber Tehrani M., Abroomand Azar P., Electrochemical Oxidation of Flavonoids and Interaction with DNA on the Surface of Supramolecular Ionic Liquid Grafted on Graphene Modified Glassy Carbon Electrode, Iran. J. Chem. Chem. Eng. (IJCCE), 37(3): 117-125 (2018).

[43] Geim A.K., Novoselov K.S., The Rise of Graphene, Nat. mater., 6(3): 183-191 (2007).

[45] Schedin F., Geim A., Morozov S., Hill E., Blake P., Katsnelson M., Novoselov K., Detection of Individual Gas Molecules Adsorbed on Graphene, Nat. Mater., 6(9): 652-655 (2007).

[46] Huang B., Li Z., Liu Z., Zhou G., Hao S., Wu J., Gu B.-L., Duan W., Adsorption of Gas Molecules on Graphene Nanoribbons and Its Implication for Nanoscale Molecule Sensor, J. Phys. Chem. C., 112(35): 13442-13446 (2008).

[48] Zhang F., Li Y., Gu Y.-e., Wang Z., Wang C.,
One-Pot Solvothermal Synthesis of a Cu2O/Graphene Nanocomposite and Its Application in an Electrochemical Sensor for Dopamine, Microchim. Acta., 173(1-2): 103-109 (2011).

[49] Kim Y.-R., Bong S., Kang Y.-J., Yang Y., Mahajan R.K., Kim J.S., Kim H., Electrochemical Detection of Dopamine in the Presence of Ascorbic Acid Using Graphene Modified Electrodes, Biosens. Bioelectron., 25(10): 2366-2369 (2010).

[51] Rani A., Rajoria P., Agarwal S., Imidazolium Chloride Immobilized Fly Ash as a Heterogenized Organocatalyst for Esterification Reaction under Microwave Irradiation Heating, Iran. J. Chem. Chem. Eng. (IJCCE), 38 (3): 87-96 (2019)

 

[53] Poursattar Marjani A., Khalafy J., Chitan M., Mahmoodi S., Microwave-Assisted Synthesis of Acridine-1,8(2H,5H)-diones via a One-pot, Three Component Reaction, Iran. J. Chem. Chem. Eng. (IJCCE), 36(2): 1-6 (2017).

[54] Sistani S., Ehsani M.R., Kazemian H., Microwave Assisted Synthesis of Nano Zeolite Seed for Synthesis Membrane and Investigation of Its Permeation Properties for H2 Separation, Iran. J. Chem.  Chem. Eng. (IJCCE), 29(4): 99-104 (2010).

 

 

[1]    Wang J., Electrochemical Glucose Biosensors, Chem. Rev., 108(2): 814-825 (2008).

[2]    Hsu Y.-W., T.-K. Hsu C.-L. Sun Y.-T. Nien N.-W. Pu, M.-D. Ger, Synthesis of CuO/Graphene Nanocomposites for Nonenzymatic Electrochemical Glucose Biosensor Applications, Electrochim Acta., 82: 152-157 (2012).

[3]    Heller A., Feldman B., Electrochemical Glucose Sensors and Their Applications in Diabetes Management, Chem. rev., 108(7): 2482-2505 (2008).

[4]    Solnica B., Kusnierz-Cabala B., Slowinska-Solnica K., Witek P., Cempa A., Malecki M.T., Evaluation of the Analytical Performance of the Coulometry-Based Optium Omega Blood Glucose Meter, Journal of Diabetes Science and Technology, 5(6): 1612-1617 (2011).

[5]    Tanaka T., Shutto E., Mizoguchi T., Fukushima K., Coulometric Titration of D (+)-Glucose Using Its Enzymatic Oxidation, Anal. Sci., 17(2): 277-280 (2001).

[6]    Steiner M.-S., Duerkop A., Wolfbeis O.S., Optical Methods for Sensing Glucose, Chem. Soc. Rev., 40(9): 4805-4839 (2011).

[7]    Gill R., Bahshi L., Freeman R., Willner I., Optical Detection of Glucose and Acetylcholine Esterase Inhibitors by H2O2Sensitive CdSe/ZnS Quantum Dots, Angew. Chem., 120(9): 1700-1703 (2008).

[8]    Thévenot D.R., Toth K., Durst R.A., Wilson G.S., Electrochemical Biosensors: Recommended Definitions and Classification, Anal. Lett., 34(5): 635-659 (2001).

[9]    Chen C., Xie Q., Yang D., Xiao H., Fu Y., Tan Y., Yao S., Recent Advances in Electrochemical Glucose Biosensors: A Review, Rsc Adv., 3(14): 4473-4491 (2013).

[10] Deng C., Chen J., Chen X., Xiao C., Nie L., Yao S., Direct Electrochemistry of Glucose Oxidase and Biosensing for Glucose Based on Boron-Doped Carbon Nanotubes Modified Electrode, Biosens. Bioelectron., 23(8): 1272-1277 (2008).

[11] Ansari A.A., Alhoshan M., Alsalhi M., Aldwayyan A., Nanostructured Metal Oxides Based Enzymatic Electrochemical Biosensors," Biosensors". (2010), InTech.

[12] Toghill K.E., Compton R.G., Electrochemical
Non-Enzymatic Glucose Sensors: A Perspective and an Evaluation
, Int. J. Electrochem., Sci., 5(9): 1246-1301 (2010).

[13] Yang M., Yang Y., Liu Y., Shen G., Yu R., Platinum Nanoparticles-Doped Sol–Gel/Carbon Nanotubes Composite Electrochemical Sensors and Biosensors, Biosens. Bioelectron., 21(7): 1125-1131 (2006).

[14] Sun Y., Buck H., Mallouk T.E., Combinatorial Discovery of Alloy Electrocatalysts for Amperometric Glucose Sensors, Anal. Chem., 73(7): 1599-1604 (2001).

[15] Jena B.K., Raj C.R., EnzymeFree Amperometric Sensing of Glucose by Using Gold Nanoparticles, Chemistry–A Eur. J., 12(10): 2702-2708 (2006).

[16] Chen J., Zhang W.-D., Ye J.-S., Nonenzymatic Electrochemical Glucose Sensor Based on MnO 2/MWNTs Nanocomposite, Electrochem. Commun., 10(9): 1268-1271 (2008).

[17] Novoselov K.S., Geim A.K., Morozov S.V., Jiang D., Zhang Y., Dubonos S.V., Grigorieva I.V., Firsov A.A., Electric Field Effect in Atomically Thin Carbon Films, Science, 306(5696): 666-669 (2004).

[18] Mohd Yazid S.N.A., Md Isa I., Abu Bakar S., Hashim N., Ab Ghani S., A Review of Glucose Biosensors Based on Graphene/Metal Oxide Nanomaterials, Anal. Lett., 47(11): 1821-1834 (2014).

[19] Chung R.-J., Wang A.-N., Liao Q.-L., Chuang K.-Y., Non-Enzymatic Glucose Sensor Composed of Carbon-Coated Nano-Zinc Oxide, Nanomaterials., 7(2): 36 (2017).

[20] Arya S.K., Saha S., Ramirez-Vick J.E., Gupta V., Bhansali S., Singh S.P., Recent Advances in ZnO Nanostructures and Thin Films for Biosensor Applications, Anal. Chim. Acta., 737: 1-21 (2012).

[21] Lu N., Shao C., Li X., Miao F., Wang K., Liu Y., CuO Nanoparticles/Nitrogen-Doped Carbon Nanofibers Modified Glassy Carbon Electrodes for Non-Enzymatic Glucose Sensors with Improved Sensitivity, Ceramics International, 42(9): 11285-11293 (2016).

[22] Foroughi F., Rahsepar M., Hadianfard M.J., Kim H., Microwave-Assisted Synthesis of Graphene Modified CuO Nanoparticles for Voltammetric Enzyme-Free Sensing of Glucose at Biological pH Values, Microchim. Acta., 185(1): 57 (2018).

[23] Luo Z.J., Han T.T., Qu L.L., Wu X.Y.,
A Ultrasensitive Nonenzymatic Glucose Sensor Based on Cu2O Polyhedrons Modified Cu Electrode, Chinese Chemical Letters, 23(8): 953-956 (2012).

[25] He G., Tian L., Cai Y., Wu S., Su Y., Yan H.,
Pu W., Zhang J., Li L., Sensitive Nonenzymatic Electrochemical Glucose Detection Based on Hollow Porous NiO, Nanoscale. Res. Lett., 13(1):
3-      (2018).

[26] Pal N., Saha B., Kundu S.K., Bhaumik A., Banerjee S., A Highly Efficient Non-Enzymatic Glucose Biosensor Based on a Nanostructured NiTiO3/NiO Material, New J. of Chem., 39(10): 8035-8043 (2015).

[27] Nontawong N., Amatatongchai M., Jarujamrus P., Tamuang S., Chairam S., Non-Enzymatic Glucose Sensors for Sensitive Amperometric Detection Based on Simple Method of Nickel Nanoparticles Decorated on Magnetite Carbon Nanotubes Modified Glassy Carbon Electrode, Int. J. Electrochem. Sci., 12: 1362-1376 (2017).

[28] Zhang H., Zhu Q., Zhang Y., Wang Y., Zhao L.,
Yu B., OnePot Synthesis and Hierarchical Assembly of Hollow Cu2O Microspheres with NanocrystalsComposed Porous Multishell and Their GasSensing Properties, Ad. Func. Mater., 17(15): 2766-2771 (2007).

[29] Gou L., Murphy C.J., Solution-Phase Synthesis of Cu2O Nanocubes, Nano. Lett., 3(2): 231-234 (2003).

[30] Orel Z.C., Anzlovar A., Drazic G., Zigon M., Cuprous Oxide Nanowires Prepared by an Additive-Free Polyol Process, Cryst. Growth. Des., 7(2): 453-458 (2007).

[31] Zhang X., Wang G., Wang Q., Zhao L., Wang M., Fang B., Cupreous Oxide Nanobelts as Detector for Determination of l-Tyrosine, Mater. Sci. Eng. B., 156(1): 6-9 (2009).

[32] Zhang X., Wang G., Gu A., Wu H., Fang B., Preparation of Porous Cu2O Octahedron and Its Application as L-Tyrosine Sensors, Solid. State. Commun., 148(11): 525-528 (2008).

[33] Zhang X., Wang G., Zhang W., Wei Y., Fang B., Fixure-Reduce Method for the Synthesis of Cu2O/MWCNTs Nanocomposites and Its Application as Enzyme-Free Glucose Sensor, Biosens. Bioelectron., 24(11): 3395-3398 (2009).

[34] Novel N., Gas Sensor Based on Cuprous Oxide Thin Films Shishiyanu, Sergiu T.; Shishiyanu, Teodor S.; Lupan, Oleg I, Sensor. Actuat. B-Chem. 113: 468-476 (2006).

[36] Shao Y., Wang J., Wu H., Liu J., Aksay I.A., Lin Y., Graphene Based Electrochemical Sensors and Biosensors: A Review, Electroanal., 22(10): 1027-1036 (2010).

[37] Rahsepar M., Pakshir M., Piao Y., Kim H., Synthesis and Electrocatalytic Performance of High Loading Active PtRu Multiwalled Carbon Nanotube Catalyst for Methanol Oxidation, Electrochim. Acta., 71: 246-251 (2012).

[38] Rahsepar M., Pakshir M., Nikolaev P., Safavi A., Palanisamy K., Kim H., Tungsten Carbide on Directly Grown Multiwalled Carbon Nanotube
as a co-Catalyst for Methanol Oxidation
, Appl. Catal. B- Environ., 127: 265-272 (2012).

[40] Rahsepar M., Pakshir M., Piao Y., Kim H., Preparation of Highly Active 40 wt.% Pt on Multiwalled Carbon Nanotube by Improved Impregnation Method for Fuel Cell Applications, Fuel. Cells., 12(5): 827-834 (2012).

[41] Sayah A., Capacitance Properties of Electrochemically Synthesised Polybithiophene-Exfoliated Graphene Composite Films, Iran. J. Chem. Chem. Eng., (IJCCE), (2018). [in Press]

[42] Tavakolyan pour F., Waqifhusain S., Rastegar H., Saber Tehrani M., Abroomand Azar P., Electrochemical Oxidation of Flavonoids and Interaction with DNA on the Surface of Supramolecular Ionic Liquid Grafted on Graphene Modified Glassy Carbon Electrode, Iran. J. Chem. Chem. Eng. (IJCCE), 37(3): 117-125 (2018).

[43] Geim A.K., Novoselov K.S., The Rise of Graphene, Nat. mater., 6(3): 183-191 (2007).

[45] Schedin F., Geim A., Morozov S., Hill E., Blake P., Katsnelson M., Novoselov K., Detection of Individual Gas Molecules Adsorbed on Graphene, Nat. Mater., 6(9): 652-655 (2007).

[46] Huang B., Li Z., Liu Z., Zhou G., Hao S., Wu J.,
Gu B.-L., Duan W., Adsorption of Gas Molecules on Graphene Nanoribbons and Its Implication for Nanoscale Molecule Sensor, J. Phys. Chem. C., 112(35): 13442-13446 (2008).

[48] Zhang F., Li Y., Gu Y.-e., Wang Z., Wang C.,
One-Pot Solvothermal Synthesis of a Cu2O/Graphene Nanocomposite and Its Application in an Electrochemical Sensor for Dopamine, Microchim. Acta., 173(1-2): 103-109 (2011).

[49] Kim Y.-R., Bong S., Kang Y.-J., Yang Y., Mahajan R.K., Kim J.S., Kim H., Electrochemical Detection of Dopamine in the Presence of
Ascorbic Acid Using Graphene Modified Electrodes
,
Biosens. Bioelectron., 25(10): 2366-2369 (2010).

[51] Rani A., Rajoria P., Agarwal S., Imidazolium Chloride Immobilized Fly Ash as a Heterogenized Organocatalyst for Esterification Reaction under Microwave Irradiation Heating, Iran. J. Chem. Chem. Eng. (IJCCE),     :      -      (2018). [in Press]

[53] Poursattar Marjani A., Khalafy J., Chitan M., Mahmoodi S., Microwave-Assisted Synthesis of Acridine-1,8(2H,5H)-diones via a One-pot, Three Component Reaction, Iran. J. Chem. Chem. Eng. (IJCCE), 36(2): 1-6 (2017).

[54] Sistani S., Ehsani M.R., Kazemian H., Microwave Assisted Synthesis of Nano Zeolite Seed for Synthesis Membrane and Investigation of Its Permeation Properties for H2 Separation, Iran. J. Chem.  Chem. Eng. (IJCCE), 29(4): 99-104 (2010).


Volume 39, Issue 2 - Serial Number 100
March and April 2020
Pages 1-10