N, S-Codoped TiO2/Fe2O3 Heterostructure Assemblies for Electrochemical Degradation of Crystal Violet Dye

Document Type: Research Article

Authors

Department of Chemical Engineering, JNTUA College of Engineering, Ananthapuramu, INDIA

Abstract

In contemporary research, “Heterostructure” assemblies play an important role in energy conversion systems, wherein the composite assemblies facilitate faster charge carrier transport across the material interfaces. The improved/enhanced efficiency metrics in these systems (electro/photo-electrochemical processes/devices) is due to synergistic interaction and synchronized charge transport across material interfaces. Herein, we report Type-I Heterostructure consists of N, S doped TiO2, and Fe2O3 for electrochemical crystal violet dye degradation studies. Synthesized N-S codoped TiO2/Fe2O3 composite heterostructured assemblies were fabricated on Titanium (Ti) substrate and used for electrochemical analysis. Complete decolorization was achieved with all the fabricated electrodes and a higher rate of degradation was achieved with the composite electrode (Ti/TiO2/Fe2O3) in comparison to individual electrodes (bare Ti, Ti/TiO2, Ti/Fe2O3). Further,
a probabilistic mechanism of degradation is proposed in support of the hypothesis.
The outcomes of the present work will have a profound effect on doped semiconductor heterostructure assemblies in the degradation of complex dye molecules of industrial outlets.

Keywords

Main Subjects


[1] Xia Y., Dai Q., Chen J., Electrochemical Degradation of Aspirin Using a Ni Doped PbO2 Electrode, J. Electroanal. Chem., 744: 117-125 (2015).

[2] Vignesh A., Siddarth A.S., Gokul O.S., Babu B.R., A Novel Approach for Textile Dye Degradation by Zinc, Iron–doped Tin Oxide/Titanium Moving Anode, Int. J. Environ. Sci. Technol., 11(6): 1669-1678 (2014).

[3] Li H., Zhu X., Jiang Y., Ni J., Comparative Electrochemical Degradation of Phthalic Acid Esters Using Boron-Doped Diamond and Pt Anode, Chemosphere, 80(8): 845-851 (2010).

[4] Martínez-Huitle C.A., Brillas E., Decontamination of Wastewaters Containing Synthetic Organic Dyes by Electrochemical Methods: a General Review, Appl. Catal., B, 87(3): 105-145 (2009).

[5] Marselli B., Garcia-Gomez J., Michaud P.A., Rodrigo M.A., Comninellis C., Electrogeneration of Hydroxyl Radicals on Boron-doped Diamond Electrodes, J. Electrochem. Soc., 150(3): D79-D83 (2003).

[6] Hammami S., Bellakhal N., Oturan N., Oturan M.A., Dachraoui M., Degradation of Acid Orange 7 by Electrochemically Generated OH Radicals in Acidic Aqueous Medium Using a Boron-Doped Diamond or Platinum anode: A Mechanistic Study, Chemosphere, 73(5): 678-684 (2008).

[7] Migliorini F.L., Steter J.R., Rocha R.S., Lanza M.R.V., Baldan M.R., Ferreira N.G., Efficiency Study and Mechanistic Aspects in the Brilliant Green Dye Degradation Using BDD/Ti Electrodes, Diamond Relat. Mater., 65: 5-12 (2016).

[8] Hamza M., Abdelhedi R., Brillas E., Sirés I., Comparative Electrochemical Degradation of the Triphenylmethane Dye Methyl Violet with Boron-Doped Diamond and Pt Anodes, J. Electroanal. Chem., 627(1): 41-50 (2009).

[9] Chianca de Moura D., Quiroz M.A., Ribeiro da Silva D., Salazar R., Martínez-Huitlea C.A., Electrochemical Degradation of Acid Blue 113 Dye Using TiO2-Nanotubes Decorated with PbO2 as Anode, Environ. Nanotechnol. Monit. Manag., 5: 13-20(2016).

[10] Sopaj F., Rodrigo M.A., Oturan N., Podvorica F.I., Pinson J., Oturan M.A., Influence of the Anode Materials on the Electrochemical Oxidation Efficiency. Application to Oxidative Degradation of the Pharmaceutical Amoxicillin, Chem. Eng. J., 262: 286-294 (2015).

[11] Panizza M., Importance of Electrode Material in the Electrochemical Treatment of Wastewater Containing Organic Pollutants, in “Electrochemistry for the Environment”, Springer, New York (2010).

[12] Xu L., Liang G., YinM., A Promising Electrode Material Modified by Nb-doped TiO2 Nanotubes for Electrochemical Degradation of AR 73, Chemosphere, 173: 425-434 (2017).

[13] Hu X., Li G., Yu J.C., Design, Fabrication, and Modification of Nanostructured Semiconductor Materials for Environmental and Energy Applications, Langmuir, 26(5): 3031-3039 (2009).

[14] Lingampalli S.R., Ayyub M.M., Rao C.N. ., Recent Progress in the Photocatalytic Reduction of Carbon Dioxide, ACS Omega, 2(6): 2740-2748(2017).

[15] Zhan W.W., Kuang Q., Zhou J.Z., Kong X.J., Xie Z.X., Zheng L.S., Semiconductor@ metal–organic framework core–shell heterostructures: a case of ZnO@ ZIF-8 nanorods with selective photoelectrochemical response, J. Am. Chem. Soc.135(5), p.1926-1933 (2013).

[16] Behara D.K., Sharma G.P., Upadhyay A.P., Gyanprakash M., Pala R.G.S., Sivakumar S., Synchronization of charge carrier separation by tailoring the interface of Si–Au–TiO2 heterostructures via click chemistry for PEC water splitting, Chem. Eng. Sci.154, p.150-169 (2016).

[17] Chan S.H.S., Yeong Wu T., Juan J.C., Teh, C.Y., Recent developments of metal oxide semiconductors as photocatalysts in advanced oxidation processes (AOPs) for treatment of dye wastewater, J. Chem. Technol. Biotechnol.86(9), p.1130-1158 (2011).

[18] Kumar S.G., Devi L.G., Review on modified TiO2 photocatalysis under UV/visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics, J. Phys. Chem. A115(46), p.13211-13241 (2011).

[19] Zatloukalová K., Obalová L., Koči K., Čapek L., Matěj Z., Šnajdhaufová H., Ryczkowski J., Słowik G., Photocatalytic degradation of endocrine disruptor compounds in water over immobilized TiO2 photocatalysts. Iran. J. Chem. Chem. Eng. (IJCCE)36(2), p.29-38 (2017).

[20] He L., Jing L., Luan Y., Wang L., Fu H., Enhanced visible activities of α-Fe2O3 by coupling N-doped graphene and mechanism insight,  ACS Catal.4(3), p.990-998 (2014).

[21] Ramacharyulu P.V.R.K., Nimbalkar D.B., Kumar J.P., Prasad G.K., Ke, S.C., N-doped, S-doped TiO2nanocatalysts: synthesis, characterization and photocatalytic activity in the presence of sunlight, RSC Adv.5(47), p.37096-37101 (2015).

[22] Diwald O., Thompson T.L., Zubkov T., Goralski E.G., Walck S.D., Yates J.T., Photochemical activity of nitrogen-doped rutile TiO2 (110) in visible light, J. Phys. Chem. B108(19), p.6004-6008 (2004).

[23] Gholipour M.R., Dinh C.T., Béland F., Do T.O., Nanocomposite heterojunctions as sunlight-driven photocatalysts for hydrogen production from water splitting, Nanoscale7(18), p.8187-8208 (2015).

[24] Liu G., Wang L., Yang H.G., Cheng H.M., Lu G.Q.M., Titania-based photocatalysts-crystal growth, doping and heterostructuring, J. Mater. Chem.20(5), p.831-843 (2010).

[25] Duan T., Chen Y., Wen Q., Duan Y., Different mechanisms and electrocatalytic activities of Ce ion or CeO2 modified Ti/Sb–SnO2 electrodes fabricated by one-step pulse electro-codeposition, RSC Adv.5(25), p.19601-19612 (2015).

[26] Rao A.N.S., Venkatarangaiah V.T., Metal oxide-coated anodes in wastewater treatment, Environ. Sci. Pollut. Res.21(5), p.3197-3217 (2014).

[27] Xu Y., Schoonen M.A., The absolute energy positions of conduction and valence bands of selected semiconducting minerals, Am. Mineral.85(3-4), p.543-556 (2000).

[28] Behara D.K., Ummireddi A.K., Aragonda V., Gupta P.K., Pala R.G.S., Sivakumar S., Coupled optical absorption, charge carrier separation, and surface electrochemistry in surface disordered/hydrogenated TiO2 for enhanced PEC water splitting reaction, Phys. Chem. Chem. Phys.18(12), p.8364-8377 (2016).

[29] Bagheri S., Chandrappa K., Hamid S.B.A., Generation of hematite nanoparticles via sol-gel method, Res. J. Chem. Sci.3(7), p.62-68 (2013).

[30] Grandcolas M., Ye J., Preparation of fine, uniform nitrogen-and sulfur-modified TiO2 nanoparticles from titania nanotubes, Sci. Technol. Adv. Mater.11(5), p.055001 (2010).

[31] Wang C., Hu Q., Huang J., Wu L., Deng Z., Liu Z., Liu Y., Cao Y., Efficient hydrogen production by photocatalytic water splitting using N-doped TiO2 film,  Appl. Surf. Sci., 283, p.188-192 (2013).

[32] Liu Q., Cao F., Wu F., Tian, W., Li L., Interface reacted ZnFe2O4 on α-Fe2O3nanoarrays for largely improved photo electrochemical activity, RSC Adv.5(97), p.79440-79446 (2015).

[33] Randeniya L.K., Murphy A.B., Plumb I.C., A study of S-doped TiO2 for photoelectrochemical hydrogen generation from water, J. Mater. Sci.43(4), p.1389-1399 (2008).

[34] Ivanov S., Barylyak A., Besaha K., Bund A., Bobitski Y., Wojnarowska-Nowak R., Yaremchuk I., Kus-Liśkiewicz M., Synthesis, characterization, and photocatalytic properties of sulfur-and carbon-codoped TiO2 nanoparticles, Nanoscale Res. Lett., 11(1), p.140 (2016).

[35] Satheesh R., Vignesh K., Suganthi A., Rajarajan M., Visible light responsive photocatalytic applications of transition metal (M= Cu, Ni and Co) doped α-Fe2O3 nanoparticles, J. Environ. Chem. Eng.2(4), p.1956-1968 (2014).

[36] Khan M.M., Lee J., Cho M.H., Au@ TiO2 nanocomposites for the catalytic degradation of methyl orange and methylene blue: an electron relay effect, J. Ind. Eng. Chem.20(4), p.1584-1590 (2014).

[37] Singh S., SrivastavaV.C., MallD., Mechanism of dye degradation during electrochemical treatment, J. Phys. Chem. C,117(29), p.15229-15240 (2013).