Green Synthesis and Characterization of Ni-Cu-Mg Ferrite Nanoparticles in the Presence of Tragacanth Gum and Study of Their Catalytic Activity in the Synthesis of Hexanitrohexaazaisowurtzitane

Document Type: Research Article


Department of Chemistry, University of Zanjan, Zanjan, I.R. IRAN


Here, we report the synthesis, characterization, and catalytic evaluation of Ni-Cu-Mg ferrite using tragacanth gum as biotemplate and Metals nitrate as the metal source by the sol-gel method without using any organic chemicals. The sample was characterized by powder X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR), Vibrating Sample Magnetometer (VSM), and Scanning Electron Microscopy (SEM). The X-Ray powder Diffraction (XRD) analysis revealed the formation of Cubic phase ferriteMNPs with an average particle size of 19 nm. The magnetic analysis revealed that the Ni-Cu-Mg ferrite nanoparticles had a ferromagnetic behavior at room temperature with a saturation magnetization of 27.85 emu/g. The catalytic activity of Ni-Cu-Mg ferrite MNPs was evaluated for the synthesis of 2,4,6,8,10,12-hexabenzyl-2,4,6,8,10,12-hexaazatetracyclo [,9.03,11 ] dodecane (HBIW) under ultrasonic irradiation. The catalyst could easily be recycled and reused a few times without a noticeable decrease in catalytic activity.


Main Subjects

[1] Taghavi Fardood S., Ramazani A., Green Synthesis and Characterization of Copper Oxide Nanoparticles Using Coffee Powder Extract, J. Nanostruct., 6(2): 167-171 (2016).

[2] Saadatjou N., Jafari A., Sahebdelfar S., Synthesis and Characterization of Ru/Al2O3 Nanocatalyst for Ammonia Synthesis, Iran. J. Chem. Chem. Eng. (IJCCE), 34(1): 1-9 (2015).

[3] Pouretedal H.R., Basati S., Characterization and Photocatalytic Activity of ZnO, ZnS, ZnO/ZnS, CdO, CdS and CdO/CdS Nanoparticles in Mesoporous SBA-15, Iran. J. Chem. Chem. Eng. (IJCCE), 34(1): 11-19 (2015).

[4] Taghavi Fardood S., Ramazani A., Joo S.W., Eco-friendly Synthesis of Magnesium Oxide Nanoparticles using Arabic Gum, J. Appl. Chem. Res., 12(1): 8-15 (2018).

[5] Ramazani A., Taghavi Fardood S., Hosseinzadeh Z., Sadri F., Joo S.W., Green Synthesis of Magnetic Copper Ferrite Nanoparticles using Tragacanth Gum as a Biotemplate and their Catalytic Activity for the Oxidation of Alcohols, Iran. J. Catal., 7(3): 181-185 (2017).

[6] Alaei M., Rashidi A.M., Bakhtiari I., Preparation of High Surface Area ZrO2 Nanoparticles, Iran. J. Chem. Chem. Eng. (IJCCE), 33(2): 47-53 (2014).

[7] Alaei M., Mahjoub A.R., Rashidi A., Effect of WO3 Nanoparticles on Congo Red and Rhodamine B Photo Degradation, Iran. J. Chem. Chem. Eng. (IJCCE), 31(1): 23-29 (2012).

[8] Ramazani A., Ahmadi Y., Fattahi N., Ahankar H., Pakzad M., Aghahosseini H., Rezaei A., Taghavi Fardood S., Joo S.W., Synthesis of 1, 3, 4-Oxadiazoles from the Reaction of N-Isocyaniminotriphenylphosphorane (Nicitpp) with Cyclohexanone, a Primary Amine and an Aromatic Carboxylic Acid via Intramolecular Aza-Wittig Reaction of In-Situ Generated Iminophosphoranes, Phosphorus, Sulfur Silicon Relat. Elem., 191(7): 1057-1062 (2016).

[9] Taghavi Fardood S., Ramazani A., Golfar Z., Joo S.W., Green Synthesis of α-Fe2O3 (hematite) Nanoparticles using Tragacanth Gel, J. Appl. Chem. Res., 11(3): 19-27 (2017).

[10] Alaei M., Jalali M., Rashidi A., Simple and Economical Method for the Preparation of MgO Nanostructures with Suitable Surface Area, Iran. J. Chem. Chem. Eng. (IJCCE), 33(1): 21-28 (2014).

[11] Dehno Khalaji A., Solid State Process for Preparation of Nickel Oxide Nanoparticles: Characterization and Optical Study, Iran. J. Chem. Chem. Eng. (IJCCE), 35(3): 17-20 (2016).

[12] Ahmadi S.H., Davar P., Manbohi A., Adsorptive Removal of Reactive Orange 122 from Aqueous Solutions by Ionic Liquid Coated Fe3O4 Magnetic Nanoparticles as an Efficient Adsorbent, Iran. J. Chem. Chem. Eng. (IJCCE), 35(1): 63-73 (2016).

[13] Moradi S., Taghavi Fardood S., Ramazani A., Green Synthesis and Characterization of Magnetic NiFe2O4@ZnO Nanocomposite and its Application for Photocatalytic Degradation of Organic Dyes, J. Mater. Sci. Mater. Electron., 29(16): 14151-14160 (2018).

[14] Hassanpour A., Hosseinzadeh-Khanmiri R., Ghorbanpour K., Abolhasani J., Mosaei Oskoei Y., Synthesis of 3,4-Dihydroquinoxalin-2-Amine, Diazepine-Tetrazole and Benzodiazepine-2-Carboxamide Derivatives with the Aid of H6P2W18O62/Pyridino-Fe3O4, Iran. J. Chem. Chem. Eng. (IJCCE), 35(4): 39-47 (2016).

[15] Bayandori Moghaddam A., Hosseini S., Badraghi J., Banaei A., Hybrid Nanocomposite Based on CoFe2O4 Magnetic Nanoparticles and Polyaniline, Iran. J. Chem. Chem Eng. (IJCCE), 29(4): 173-179 (2010).

[16] Ramazani A., Farshadi A., Mahyari A., Sadri F., Joo S.W., Asiabi P.A., Taghavi Fardood S., Dayyani N., Ahankar H., Synthesis of Electron-poor N-Vinylimidazole Derivatives Catalyzed by Silica Nanoparticles under Solvent-free Conditions, Int. J. Nano Dimens., 7(1): 41 (2016).

[17] Khashi M., Allameh S., Beyramabadi S.A., Morsali A., Dastmalchian E., Gharib A., BiFeO3 Magnetic Nanoparticles: A Novel, Efficient and Reusable Magnetic Catalyst for the Synthesis of Polyhydroquinoline Derivatives, Iran. J. Chem. Chem. Eng. (IJCCE), 36(3): 45-52 (2017).

[18] Lebid M., Omari M., Effects of the Solvent and Calcination Temperature on LaFeO3 Catalysts for Methanol Oxidation, Iran. J. Chem. Chem. Eng. (IJCCE), 35(3): 75-81 (2016).

[19] Batoo K.M., El-sadek M.-S.A., Electrical and Magnetic Transport Properties of Ni–Cu–Mg Ferrite Nanoparticles Prepared by Sol–Gel Method, J. Alloys Compd., 566: 112-119 (2013).

[22] Arabian R., Ramazani A., Mohtat B., Azizkhani V., Joo S.W., Rouhani M., A Convenient and Efficient Protocol for the Synthesis of HBIW Catalyzed by Silica Nanoparticles under Ultrasound Irradiation, J. Energ. Mater., 32(4): 300-305 (2014).

[23] Maksimowski P., Gołofit T., Tomaszewski W., Palladium Catalyst in the HBIW Hydrodebenzylation Reaction. Deactivation and Spent Catalyst Regeneration Procedure, Cent. Eur. J. Energetic Mater., 13(2): 333-348 (2016).

[24] Nielsen A.T., Chafin A.P., Christian S.L., Moore D.W., Nadler M.P., Nissan R.A., Vanderah D.J., Gilardi R.D., George C.F., Flippen-Anderson J.L., Synthesis of Polyazapolycyclic Caged Polynitramines, Tetrahedron, 54(39): 11793-11812 (1998).

[25] Bellamy A.J., Reductive Debenzylation of Hexabenzylhexaazaisowurtzitane, Tetrahedron, 51(16): 4711-4722 (1995).

[26] Bayat Y., Ebrahimi H., Fotouhi-Far F., Optimization of Reductive Debenzylation of Hexabenzylhexaazaisowurtzitane (the Key Step for Synthesis of HNIW) using Response Surface Methodology, Org. Process Res. Dev., 16(11): 1733-1738 (2012).

[27] Qiu W., Chen S., Yu Y., The Crystal Structure of Hexabenzoylhexaazaisowurtzitane, J. Chem. Crystallogr., 28(8): 593-596 (1998).

[28] Crampton M.R., Hamid J., Millar R., Ferguson G., Studies of the Synthesis, Protonation and Decomposition of 2, 4, 6, 8, 10, 12-Hexabenzyl-2, 4, 6, 8, 10, 12-Hexaazatetracyclo [5.5. 0.05, 9.03, 11] Dodecane (HBIW), J. Chem. Soc., Perkin Trans. 2, 2(5): 923-929 (1993).

[30] Zohuriaan M., Shokrolahi F., Thermal Studies on Natural and Modified Gums, Polym. Test., 23(5): 575-579 (2004).

[31] Ou Y., Jia H., Xu Y., Chen B., Fan G., Liu L., Zheng F., Pan Z., Wang C., Synthesis and Crystal Structure of β-Hexanitrohexaazaisowurtzitane, Sci. China, Ser. B, Chem., 42(2): 217-224 (1999).

[32] Waldron R., Infrared Spectra of Ferrites, Phys. Rev., 99(6): 1727-1735 (1955).

[35] Shokrollahi S., Ramazani A., Tabatabaei Rezaei S.J., Mashhadi Malekzadeh A., Azimzadeh Asiabi P., Joo S.W., Citric acid as an Efficient and Green Catalyst for the Synthesis of Hexabenzylhexaazaisowurtzitane (HBIW), Iran. J. Catal., 6(1): 65-68 (2016).

[36] Jefimczyk J., Antczak A., Maksimowski P., Studies on Synthesis of Hexabenzylhexaazaisowurtzitane (HBIW) in the Menthol-Sulfuric Acid System, Przem. Chem., 87(3): 296-299 (2008).

[37] Gołofit T., Maksimowski P., Szwarc P., Cegłowski T., Jefimczyk J., Scale-Up Synthesis of HBIW, an Intermediate in CL-20 Synthesis, Org. Process Res. Dev., 21(7): 987-991 (2017).

[38] Bayat Y., Hajighasemali F., An Efficient and Facile Synthesis of CL‐20 from TADNO using HNO3/N2O5 and Optimization of Reaction Parameters by Taguchi Method, Propellants, Explosives, Pyrotechnics, 41(5): 893-898 (2016).