Acetic acid Separation as a Function of Temperature Using Commercial Pervaporation Membrane

Document Type: Review Article

Authors

New Separation Laboratory Department of Chemical Engineering G H Patel College of Engineering & Technology Vallabh Vidyanagar-388120, Gujarat, INDIA

Abstract

Acetic acid was separated from a dilute mixture using a commercial polyvinyl alcohol (PVA) membrane.  Intrinsic separation characteristics of the membrane were studied as a function of temperature.  The degree of membrane swelling decreased marginally with increase in feed temperature. At 25oC the maximum degree of swelling was found out to be 46.3%, which reduced
to 39.5% at 65oC. Although the pervaporation flux increased with increasing temperature of the liquid feed mixture, the separation factor decreased. From the temperature dependence of diffusion and permeation values, the Arrhenius apparent activation parameters for water permeation were estimated. Diffusion and partition coefficient for water and acid were found to increase with temperature, but the diffusion coefficient of water was substantially higher than that of acetic acid at a constant feed concentration. The membrane used in the present study could tolerate highly concentrated corrosive acetic acid, thus may be useful for dehydration of other organics.

Keywords

Main Subjects


[1] Kuila S.B., Ray S.K., Dehydration of Acetic Acid by Pervaporation Using Filled IPN Membranes, Sep. Purif. Technol. 81: 295-306 (2011).

[2] Durmaz-Hilmioglu N., Yildirim A.E., Sakaoglu A.S., Tulbentci S., Acetic Acid Dehydration by Pervaporation, Chem. Eng. Proc. 40: 263-267 (2001)

[3]  Chien I.L., Zeng K.L., Chao H.Y., Hong Liu J., Design and Control of Acetic Acid Dehydration System via Heterogeneous Azeotropic Distillation, Chem. Eng. Sci. 59: 4547-4567 (2004).

[5] Miyoshi H., Boddeker K.W., Hattenbach K., Wenzlaff A, Pervaporation of Water-Carboxylic Acids Solutions with Ion Exchange Membranes, Maku (Membrane), 13(2): 109-115 (1988). 

[6] Nguyen T.Q., Essamri A., Clement R., Neel J., Synthesis of Membranes for the Dehydration of Water/ Acetic Acid Mixtures by Pervaporation. I. Polymer Material Selection, Macromol. Chem., 188(8): 1973-1984 (1987).

[7] Yoshikawa M., Yukoshi T., Sanui K., Ogata N., Separation of Water-Acetic Acid Mixture by Pervaporation Through Synthetic Polymer Membranes Containing Pendant Carboxylic Acid, Membrane 10(4): 247-253 (1985).

[8] Chen J.H., Zheng J.Z., Liu Q.L., Guo H.X., Weng W., Li S.X., Pervaporation Dehydration of Acetic Acid Using Polyelectrolytes Complex (PEC)/11-Phosphotungstic Acid Hydrate (PW11) Hybrid Membrane (PEC/PW11), J. Membr. Sci. 429: 206-213 (2013).

[9] Lu S-Y., Chiu C-P., Huang H-Y., Pervaporation of Acetic Acid/Water Mixtures Through Silicalite Filled Polydimethylsiloxane Membranes, J. Membr. Sci., 176: 159-167(2000).

[10] Tsuru T., Shibata T., Wang J., Lee H.R., Kanezashi M., Yoshioka T., Pervaporation of Acetic Acid Aqueous Solutions by Organosilica Membranes, J. Membr. Sci. 421: 25-31 (2012).

[11] Kulkarni S., Tambe S.M., Kittur A., Kariduraganavar, M. Y., Preparation of Novel Composite Membranes for the Pervaporation Separation of Water–Acetic Acid Mixtures, J. Membr. Sci. 285: 420-431 (2006).

[12] Wang Y., Chung T.S., Gruender M., Sulfonated Polybenzimidazole Membranes for Pervaporation Dehydration of Acetic Acid, J. Membr. Sci.  415: 486–495 (2012).

[13] Jullok N., Darvishmanesh S., Luis P., Bruggen B.V., The Potential of Pervaporation for Separation of Acetic Acid and Water Mixtures Using Polyphenylsulfone Membranes, Chem. Eng. J., 175: 306-315 (2011).

[14] Alghezawi N., Sanli O., Aras L., Asman G., Separation of Acetic Acid–Water  Mixtures Through Acrylonitrile Grafted Poly (vinyl alcohol) Membranes by Pervaporation, Chem. Eng. Proc. 44(1): 51-58 (2005).

[15] Verhoef A., Figoli A., Leen B., Bettens B., Drioli E., Van der Bruggen B., Performance of a Nanofiltration Membrane for Removal of Ethanol from Aqueous Solutions by Pervaporation. Sep. Purif. Technol. 60: 54-63 (2008).

[16] Baker R.W., Wijmans J.G., Huang Y., Permeability, Permeance and Selectivity: a Preferred Way of Reporting Pervaporation Performance Data, J. Membr. Sci. 348: 346-352 (2010).

[17] Kusumocahyo S.P., Sano K., Sudoh M., Kensaka M., Water Permselectivity in the Pervaporation of Acetic Acid–Water Mixture Using Crosslinked Poly(vinyl alcohol) Membranes, Sep. Purif. Technol. 18: 141–150 (2000).

[18] Kim K.-J., Lee S-B., Han N-W., Effects of the Degree of Crosslinking on Properties of Poly (vinyl alcohol) Membranes, Polym. J., 25(12): 1295-1302 (1993).

[19] Lee Y.M., Bourgeois D., Belfort G., Sorption, Diffusion and Pervaporation of Organics in Polymer Membranes, J. Membr. Sci. 44: 161-181 (1989).

[21] Kariduraganavar M.Y., Kulkarni S.S., Kittur A.A., Pervaporation Separation of Water–Acetic Acid Mixtures Through Poly(vinyl alcohol)-silicone Based Hybrid Membranes, J. Membr. Sci 246: 83-93. (2005).

[22] Puyou J., Zhang M., Hu L., Zhou Y-H., The Plasticizing Mechanism and Effect of  aluminium Chloride and Glycerin on Poly(vinyl alcohol) Films, Iran. J. Chem. Eng. (IJCCE), 35: 129-135 (2016).