Activity Coefficients of NaClO4 in (PEG 4000 + H2O) Mixtures at (288.15, 298.15 and 308.15) K

Document Type: Research Article


1 Escuela de Ingeniería Química, Pontificia Universidad Católica de Valparaíso, CHILE

2 Departamento de Ingeniería Química y Procesos de Minerales, CICITEM, Universidad de Antofagasta, CHILE

3 Departamento de Química, Facultad de Ciencias, Universidad de La Laguna, Tenerife, Islas Canarias, ESPAÑA


The cell potential of the cell containing two ion-selective electrodes (ISE), Na-ISE | NaClO4 (m), PEG 4000 (Y), H2O (100-Y) | ClO4-ISE has been measured at temperatures of (288.15, 298.15, and 308.15) K as a function of the weight percentage Y of PEG 4000 in a mixed solvent at a 1 Mpa and the standard state for measured activity coefficients will be a solution of the salt in pure water. Y was varied between (0 and 25) wt.% in five-unit steps and the molality of the electrolyte (m) was between 0.05 mol kg-1 and almost saturation. The values of the standard cell potential were calculated using routine methods of extrapolation together with extended Debye-Hückel and Pitzer equations. The results obtained produced good internal consistency for all the temperatures studied. Once the standard electromotive force was determined, the mean ionic activity coefficients for NaClO4, the Gibbs energy of transfer from the water to the PEG 4000-water mixture, and the primary NaCl hydration number were calculated.


Main Subjects

 [1] Willauer H.D., Huddleston J.G., Rogers R.D., Solute Partitioning in Aqueous Biphasic Systems Composed of Polyethylene Glycol and Salt:  The Partitioning of Small Neutral Organic Species.Ind. Eng. Chem. Res. 41(7): 1892-1904, (2002).


[2]Rogers R.D., Eiteman M.A., “Aqueous Biphasic Separations: Biomolecules to Metal Ions”, Plenum Press, New York, (1995).

[4] Jayapal M., Regupathi I., Murugesan T., Liquid−Liquid Equilibrium of Poly(ethylene
glycol) 2000 + Potassium Citrate + Water at (25, 35, and 45) °C.
J. Chem. Eng. Data. 52(1): 56-59, (2007).

[5] Perumalsamy M., Bathmalakshmi A., Murugesan T., Experiment and Correlation of Liquid−Liquid Equilibria of an Aqueous Salt Polymer System Containing PEG6000 + Sodium Citrate. J. Chem. Eng. Data. 52(4): 1186-1188, (2007).

[6] Moura de Oliveira R., Reis Coimbra J.S., Minim L.A., Mendes L-H., Ferreira M.P., Liquid–Liquid Equilibria of Biphasic Systems Composed of Sodium Citrate + Polyethylene(glycol) 1500 or 4000 at Different Temperatures.  J. Chem. Eng. Data. 53(4): 895-899 (2008).

[7Pellegrini L., Fernández C., Picó G., Nerli V., Liquid–Liquid Equilibrium Phase Diagrams of Polyethyleneglycol + Sodium Tartrate + Water Two-Phase Systems. J. Chem. Eng. Data. 53(5): 1175-1178, (2008).

[8] Alves J.G., Brenneisen J., Ninni L., Meirelles A.J., Maurer G., Aqueous Two-Phase Systems of Poly(ethylene glycol) and Sodium Citrate: Experimental Results and Modeling. J. Chem. Eng. Data. 53(7): 1587-1594, (2008).

[10] Mohsen-Nia M., Rasa H., Modarress H., Liquid-liquid equilibria for the poly(ethylene glicol) + water + copper sulfate system at different temperatures. J. Chem. Eng. Data, 53(4):946-949, (2008).

[11] Moura de Oliveira R., dos Reis Coimbra J.S., Francisco K.R., Minim L.A., Mendes L.H., Marques J.A., Liquid−Liquid Equilibrium of Aqueous Two-Phase Systems Containing Poly(ethylene) Glycol 4000 and Zinc Sulfate at Different Temperatures. J. Chem. Eng. Data. 53(4): 919-922, (2008).

[12] Martins, J. P.; Carvalho, C.P.; da Silva, L.H.M.; Coimbra, J.S.R.; da Silva, M.C.H.; Rodrigues, G.D.; Minim, L.A. Liquid-liquid equilibria of an aqueous two-phase system containing poly(ethylene) glicol 1500 and sulfate salts at different temperatures. J. Chem. Eng. Data. 53(1): 238-241, (2008).

[13] Amaresh, S. P,; Murugesan, S.; Regupathi, I.; Murugesan, T. Liquid-liquid equilibrium of poly(ethylene glycol) 4000 + diammonium hydrogen phosphate + water at different temperatures.  J. Chem. Eng. Data. 53(7): 1574-1578, (2008).

[14] Graber, T. A.;  Medina, H.: Galleguillos, H.R.; Taboada, M.E. Phase Equilibrium and Partition of Iodide in an Aqueous Biphasic System Formed by (NH4)2SO4 + PEG + H2O at 25 °C. J. Chem. Eng. Data, 52(4):1262-1267, (2007).

[15]Yankov, D. S.; Martin, J. P.; Yordanov, B. Y.;. Stateva, R. P. Influence of Lactic Acid on the Formation of Aqueous Two-Phase Systems Containing Poly(ethylene glycol) and Phosphates. J. Chem. Eng. Data, 53(6): 1309-1315, (2008).

[16] Silvério, S. C.; Madeira, P. P.; Rodríguez, O.; Teixeira, J. A.; Macedo, E. A. ΔG(CH2) in PEG−Salt and Ucon−Salt Aqueous Two-Phase Systems. J. Chem. Eng. Data, 53(7): 1622-1625, (2008).

[18] Graber, T.A.; Taboada, M.E.; Cartón, A.; Bolado, S. Liquid−Liquid Equilibrium of the Poly(ethylene glycol) + Sodium Nitrate + Water System at 298.15 K. J. Chem. Eng. Data, 45(2): 182-269, (2000).

[19] Silva, R. M.; Minim, L. A.; Coimbra, J. S.; Garcia, E. E.; da Silva, L. H.; Rodriguez, V. P. Density, Electrical Conductivity, Kinematic Viscosity, and Refractive Index of Binary Mixtures Containing Poly(ethylene glycol) 4000, Lithium Sulfate, and Water at Different Temperatures. J. Chem. Eng. Data, 52(5): 1567-1570, (2007).

[21] Morales, J.W.; Galleguillos, H.R.; Taboada, M.E.; Hernández-Luis, F. Activity coefficients of NaCl en PEG 4000 + wáter Mixtures at 288.15, 298.15 and 308.15 K. Fluid Phase Equilib. 281(2): 120-126, (2009).

[22] Hernández-Luis, F.; Rodriguez-Raposo, R.; Galleguillos, H. R.; Morales, J. W. Activity coefficients of KCl in PEG 4000 + water mixtures at 288.15, 298.15 and 308.15 K. Fluid Phase Equilib. 295(2): 163-171, (2010).

[23] Morales, J. W.; Galleguillos, H. R.; Hernández-Luis, F. Activity coefficients of LiCl in (PEG4000 + wáter) at T = (288.15, 298.25, and 308.15) K. J.Chem. Thermodyn., 42(10): 1255-1260, (2010).

[24] Hernández-Luis, F.; Morales, J. W.; Graber, T. A.; Galleguillos, H. R. Activity coefficients of NaNO3 in Poly(ethylene glycol) 4000 + water mixtures at (288.15, 298.15, and 308.15) K. J. Chem. Eng. Data. 55(9): 4082-4087, (2010).

[25] Morales, J.W.; Galleguillos, H.R.; Hernández-Luis, F. Activity Coefficients of NaBF4 in PEG4000 + Water Mixtures at (288.15, 298.15, and 308.15) K. J. Chem. Eng. Data, 57(2): 500-506, (2012).

[26] Morales, J.W.; Galleguillos, H. R.; Hernández-Luis, F.; Rodriguez-Raposo, R. Activity Coefficients of NaClO4 in Aqueous Solution.  J. Chem. Eng. Data, 56(8): 3449-3453, (2011).

[27] Hernández-Luis, F.; Amado-González, E.; Esteso, M. A. Activity coefficients of NaCl in trehalose−water and maltose−water mixtures at 298.15 K. Carbohydr. Res. 338(13): 1415-1424, (2003).

[28] Hernández-Luis, F.; Vázquez, M. V.; Esteso, M. A. Activity coefficients for NaF in methanol-water and ethanol-water mixtures at 25 °C. J. Mol. Liq. 108(1-3): 283-301, (2003).

[29] Hernández-Luis, F.; Grandoso, D.; Lemus, M. Activity Coefficients of NaCl in Fructose + Water at 298.15 K. J. Chem. Eng. Data. 49(3): 668-674, (2004).

[30] Hernández-Luis, F.; Galleguillos, H. R.; Vázquez, M. V. Activity coefficients of NaF in (glucose + water) and (sucrose + water) mixtures at 298.15 K. J. Chem. Thermodyn. 36(11): 957-964, (2004).

[31] Hernández-Luis, F.; Galleguillos, H.R.; Esteso, M. A. Activity coefficients of NaF in aqueous mixtures with ɛ-increasing co-solvent: formamide–water mixtures at 298.15 K. Fluid phase equilib., 227(2): 245-253, (2005).

[32] Hernández-Luis, F,: Galleguillos, H.R.; Graber, T.A.; Taboada, M.E. Activity coefficients of LiCl in ethanol-water mixtures at 298.15 K. Industrial & Engineering Chemistry Research, 47(6): 2056-2062, (2008).

[33] Hernández-Luis, F., Galleguillos, H. R., Fernández-Mérida, L., & González-Díaz, O. Activity coefficients of NaCl in aqueous mixtures with ɛ-increasing co-solvent: Formamide–water mixtures at 298.15 K. Fluid Phase Equilibria, 275(2): 116-126, (2009).

[35] Pitzer, K. S., Ion Interaction Approach: Theory and Data Correlation. In Activity Coefficients in Electrolyte Solutions, Pitzer, K. S. Ed.; CRC Press, Boca Raton, Florida, (1991). 

[36] Martell, A. E., & Smith, R. M. Critical stability constants, Plenum Press. New York, (1974).

[37] Delahay, P., Double Layer and Electrode Kinetics, Wiley: New York, (1965).

[38] Goodisman, J., Electrochemistry: Theoretical Foundations, Wiley: New York, (1987).

[39] Skoog, D.A., Holler, F.J., Nieman, T.A., Principles of Instrumental Analysis, Saunders College Publishing: Philadelphia, (1992).

[40] Hitchcock, D. I. The extrapolation of electromotive force measurements to unit ionic activity. Journal of the American Chemical Society, 50(8), 2076-2079, (1928).

[41] Robinson, R. A., Stokes, R. H. Electrolyte Solutions, Dover Publications, Inc., Mineola, New York, (2002).

[42] Krestov, G.A. Thermodynamics of Salvation: Solution and Dissolution; Ions and Solvents; Structure and Energetics; Ellis Horwood Limited: Chichester, (1991).

[43] N. Bjerrum, Kgl. Danske Videnskab Selsk 7: 1-48, (1926).