Synthesis and Characterization of Polyaniline-Polystyrene-Chitosan/Zinc Oxide Hybrid Nanocomposite

Document Type: Research Article

Authors

1 Department of Chemistry, Payame Noor University, P. O. Box: 19395-3697 Tehran, I.R. IRAN

2 Departments of Chemistry, University of Zanjan, P. O. Box 45195-313, Zanjan, I.R. IRAN

Abstract

A hybrid nanocomposite composed of polyaniline-polystyrene-chitosan/zinc oxide was prepared via a simple in situ polymerization method. The synthesized copolymers were analyzed using Fourier Transform InfraRed (FT-IR), and UltraViolet-Visible (UV–Vis) spectroscopies, ThermoGravimetric Analysis (TGA), and Field Emission Scanning Electron Microscopy (FE-SEM), X-ray diffraction, energy dispersive,  X-ray photoelectron spectroscopy and cyclic voltammetry. The chemical bonding established between polyaniline-polystyrene and polyaniline-polystyrene-chitosan/zinc oxide, confirmed by FT-IR, is likely to be responsible for the enhanced chemical stability. From SEM observation, the ratio of ZnO nanoparticles to nanocomposite altered the morphology of the hybrids from granular to plate-like structure, which was confirmed by EDXS. The thermal property was studied using TG/DTA analysis shows the residual weight (TGA curves) and its weight derivative (DTA curves) of the polyaniline-polystyrene-chitosan/zinc oxide are more stable than chitosan and polyaniline-polystyrene-chitosan. Also, the cyclic voltammetry on the obtained hybrid materials revealed that the plate-like structure was more advantages for electrochemical stability. Overall, the results show that the introduction of the ZnO nanoparticles into the polyaniline-polystyrene-chitosan matrix enhanced the thermal and electrode stability.

Keywords

Main Subjects


[1] Shabanian M., Khoobi M., Hemati F., Khonakdar H.A., Ebrahimi E, Wagenknecht U, Shafiee A., New PLA/PEI-Functionalized Fe3O4 Nanocomposite: Preparation and Characterization, Journal of Industrial and Engineering Chemistry, 24: 211-218 (2015).

[2]  Shabanian M., Khoobi M., Hemati F., Khonakdar H. A., Faghihi K.H., Wagenknecht U., Sadat Ebrahimi E., Shafiee A., Effects of Polyethyleneimine-Functionalized MCM-41 on Flame Retardancy and Thermal Stability of Polyvinyl Alcohol, Particuology, 19:14-21 (2015).

[3] Khoobi M., Khalilvand-Sedagheh M., Ramazani A., Asadgol Z., Forootanfar Hand., Faramarzi M. A., Synthesis of Polyethyleneimine (PEI) and β-Cyclodextrin Grafted PEI Nanocomposites with Magnetic Cores for Lipase Immobilization and Esterification, Journal of Magnetism and Magnetic Materials,  375–384 (2014).

[4] Motevalizadeh F., Khoobi M., Sadighi A., Khalilvand-Sedagheh M., Pazhouhandeh M., Ramazani A., Faramarzi M. A, Shafiee A., Lipase Immobilization onto Polyethylenimine Coated Magnetic Nanoparticles Assisted by Divalent Metal Chelated Ions, Journal of Molecular Catalysis B: Enzymatic, 120: 75-83 ( 2015).

[5] Akrami M., Khoobi M., Khalilvand-Sedagheh M., Haririan I., Bahador A., Faramarzi M. A., Rezaei S.H., Akbari Javar H., Salehi F., Kabudanian Ardestani S., Shafiee A., Evaluation of Multilayer Coated Magnetic Nanoparticles as Biocompatible Curcumin Delivery Platforms for Breast Cancer TreatmentRSC Adv., 5: 88096-88107 (2015).

[6] Nobrega M. M., Izumi C. M.S., Temperini M. L.A., Probing Molecular Ordering in the HCl-Doped Polyaniline with Blk and Nano Fiber Morphology by Their Thermal Behavior, Polym. Degrad. Stabil., 113: 66-71(2015).

[7] Hosseini M., Bahmani B., Moztarzadeh F., Rabiee M., Fabrication of a Sulfite Biosensor by the Use of Conducting Polymer, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 27 (1): 115-121. (2008).

[9] Pandiselvi K., Thambidurai S., Synthesis, Characterization, and Antimicrobial Activity of Chitosan–Zinc Oxide/Polyaniline Composites, Materials Science in Semiconductor Processing, 573-581 (2015).

[13] Saini P., Choudhary V., Singh B. P., Mathur R. B.,  Dhawan S.K., Enhanced Microwave Absorption Behavior of Polyaniline-CNT/Polystyrene Blend in 12.4–18.0 GHz range, Synthetic. Met., 161: 1522–1526 (2011).

[14] Trépanier M., Tavasoli A., Sanaz Anahid S., Dalai A. K., Deactivation Behavior of Carbon Nanotubes Supported Cobalt Catalysts in Fischer-Tropsch SynthesisIranian Journal of Chemistry and Chemical Engineering (IJCCE), 30(1): 37-47 (2011).

[15] Do J.S., Lin K.H., Ohara R., Preparation of Urease/Nano-Structured Polyaniline–Nafion (R)/Au/Al2O3 Electrode for Inhibitive Detection of Mercury Ion, J. Taiwan. Inst. Chem. Eng., 43: 662–668 (2012).

[16] Kamalesh S., Tan P., Wang J., Lee T., Kang E. T., Wang C.H., Biocompatibility of Electroactive Polymers in Tissues , J. Biomed. Mater. Res. Part A, 52: 467–478 (2000).

[17] Shi N., Guo X., Jing H., Gong J., Sun C., Yang K., Antibacterial Effect of the Conducting Polyaniline, J.Mater.Sci.Technol. 22: 289–290 (2006).

[18] Pedro R. D. O., Takakia M., Gorayeb T. C. C., Bianchi V. L. D., Thomeo J. C., Tieraa M. J., De V. A., Tiera O., Application of Quaternary Derivatives of Chitosan as Bio Fungicide About Fungus 'Aspergillus flavus', Microbiol. Res. 168: 50–55 (2013).

[19] Chen C. H., Dai Y. F., Effect of Chitosan on Interfacial Polymerization of Aniline, Carbohydr. Polym. 84: 840–843 (2011).

[20] Jeon Y. J., Park P. J., Kim S. K., Antimicrobial Effect of Chitooligosaccharides Produced by Bioreactor, Carbohydr. Polym. 44: 71–76 (2001).

[22] Krishnaveni R., Thambidurai S., Industrial Method of Cotton Fabric Finishing with Chitosan–ZnO Composite for Anti-Bacterial and Thermal Stability, Ind. CropsProd. 47: 160–167 (2013).

[24]  Ryu K.S., Moon B.W., Joo J., Chang S.H., Characterization of Highly Conducting Lithium salt Doped Polyaniline Films Prepared from Polymer Solution, Polymer., 42: 9355-9360 (2001).

[25] Izumi C. M. S., Constantino V. R. L., Ferreira A.M. C., Temperini M. L. A., Spectroscopic Characterization of Polyaniline Doped with Transition Metal SaltsSynthetic Met., 156: 654-663 (2006).

[27] Abbasian M., Jaymand M., Niroomand P., Farnoudian-Habibi A., Ghasemi Karaj-Abad S., Grafting of Aniline Derivatives onto Chitosan and Their Applications for Removal of Reactive Dyes from Industrial Effluents, International Journal of Biological macromolecules, 95: 393-403(2017).

[28] Abbasian M., Mahmoodzadeh F., Synthesis of Antibacterial Silver–Chitosan-Modified Bionanocomposites by RAFT Polymerization and Chemical Reduction Methods, Journal of Elastomers & Plastics, 49 (2): 173-193 (2017).

[29] Abbasian M., Niroomand P., Jaymand M., Cellulose/Polyaniline Derivatives Nanocomposites: Synthesis and Their Performance in Removal of Anionic Dyes from Simulated Industrial Effluents, Journal of Applied Polymer Science, 134: 45352 (2017).

[31] Abbasian M., Pakzad M., Ramazani A., Nazari K., Cellulose Modification Through Grafting of Polyacrylonitrile by Atom Transfer Radical Polymerization, Iranian Journal of Polymer Science and Technology, 28 (4): 323-332 (2015). [in Persian]

[32] Abbasian M., Mahmoodzadeh F., Synthesis of Chitosan-Graft-Poly (Acrylic Acid) Using 4-Cyano-4-[(Phenylcarbothioyl) Sulfanyl] Pentanoic Acid to Serve as RAFT Agent, Journal of Polymer Materials, 32 (4): 527 (2015).

[34] Xuan H., Yao C., Hao X., Liu C. et al., Fluorescence Enhancement with One-Dimensional Photonic Crystals/Nanoscaled ZnO Composite Thin Films, Colloid. Surface. A., 497: 251-256(2016).

[35] Yadollahi M., Farhoudian S., Barkhordari S, Gholamali I., Farhadnejad H., Motasadizadeh H., Facile Synthesis of Chitosan/ZnO Bio-Nanocomposite Hydrogel Beads as Drug Delivery Systems, Int. J. Biol. Macromol.,82: 273-278 (2016).

[36] Ghasemi M., Elaheh Kowsari E., Ali Amoozadeh, Chitosan/Poly(Amide-Imide) Blend Films: Studies on Thermal and Mechanical Stability, Morphology and Biodegradability, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 36(2), 55-70 (2017).

[37] Xu J. C., Liu W. M., Li H.L., Titanium Dioxide Doped Polyaniline, Mater. Sci. Eng. C., 25: 444-447(2005).

[38] Salem M. A., Al-Ghonemiy A. F., Zaki A. B., Photocatalytic Degradation of  Allura Red and Quinoline Yellow with Polyaniline/TiO2 Nanocomposite, Appl. Catal. B., 91: 59-66(2009).