Biological, Electronic, NLO, NBO, TDDFT and Vibrational Analysis of 1-benzyl-4-formyl-1H-pyrrole-3-carboxamide

Document Type: Research Article

Authors

1 Govt. College Bishrampur Surajpur Chhattisgarh, INDIA

2 Sri Ramshwaroop Memorial Institute of Engineering and Management Lucknow, INDIA

3 The University of Dodoma, Dodoma, TANZANIA

Abstract

Biological Electronic, Optical Properties, and Vibrational Analysis of 1-benzyl-4-formyl-1H-pyrrole 3carboxamide are studied by using a combination of DFT/B3LYP method and 6-311G (d, p) basis set. Optimized parameters of the title molecule are well-matched with the experiments. The NLO properties of 1-benzyl-4-formyl-1H-pyrrole 3carboxamide have been examined with the help of Polarizability and Hyper-Polarizability. The electronic properties of 1-benzyl-4-formyl-1H-pyrrole 3carboxamide are described with the help of HOMO, LUMO composition. The UV spectra suggest that a strong excitation line occurs at 2.03 eV (160 nm) due to H-2→LUMO (30%). NBO analysis shows that hyper conjugative interaction energy has higher value during LP→ π*, π→ π* transitions. Several biological activities are calculated by PASS software. Docking of the molecule is performed with 5P4Q protein and FF score is -1051.65A.U.

Keywords

Main Subjects


[1] Misra N., Prasad O., Sinha L. Pandey A., Molecular Structure and Vibrational Spectra of 2-Formyl Benzonitrile by Density Functional Theory and ab Initio Hartree–Fock Calculations, Journal of Molecular Structure: Theochem, 822: 45-47 (2007).

[3] Carey F.A., Sundberg R.J., Advanced Organic Chemistry, Part A: Structure and Mechanisms, 5th ed, Springer, New York, P. 806–808, 312–313 (2008).

[4] Hartner Jr F., Katritzky A., Rees C. and Scriven E., Comprehensive Heterocyclic Chemistry II, ed. I. Shinkai, Pergamon, Oxford, 3, p. 4 (1996)

[5] Bhardwaj V., Gumber D. Abbot V. Dhiman S.  Sharma P., Pyrrole: A Resourceful Small Molecule in Key Medicinal Hetero-Aromatics, RSC Adv., 5: 15233-15266 (2015).

[6] Adams J.M. and Capecchi M.R..,N-Formylmethionyl-sRNA as the Initiator of Protein Synthesis, PNAS, 55(1):147–155 (1966).

[8] Toja E., Depaoli A., Tuan G., Kettenring J., Synthesis, 272-274 (1987).

[11] Kotaiah Y., Nagaraju K., Harikrishna N., Rao C. V., Yamini L., Vijjulatha M., Synthesis, Docking and Evaluation of Antioxidant and Antimicrobial Activities of novel 1,2,4-triazolo[3,4-b][1,3,4]thiadiazol-6-yl)selenopheno[2,3-d]pyrimidines, Eur. J. Med. Chem., 75: 195–202 (2014).

[12] Swamy S.N., Basappa, Priya B.S., Prabhuswamy B., Doreswamy B.H., Shahidhara J.S., Rangappa K. S., Synthesis of Pharmaceutically Important Condensed Heterocyclic 4,6-disubstituted-1,2,4-triazolo-1,3,4-Thiadiazole Derivatives as Antimicrobials, Eur. J. Med. Chem., 41:531–538 (2006).

[14] Demir A.S., Akhmedov I.M., Sesenoglu O., Synthesis of 1,2,3,5-tetrasubstituted Pyrrole Derivatives From 2-(2-bromoallyl)-1,3-dicarbonyl Compounds, Tetrahedron, 58: 9793-9799 (2002).

[15] Meshram H.M., Prasad B.R.V, Kumar D.A., A Green Approach for Efficient Synthesis of N-Substituted Pyrroles in Ionic Liquid under Microwave Irradiation, Tetrahedron Lett., 51: 3477- 3480 (2010).

[16] Zhong Q.D., Hu S., Yan H., Crystal Structure of 1-benzyl-4-formyl-1H-pyrrole-3-carb­oxamide, Acta Cryst.E, 72: 133–135 (2016).

[17] Becke A.D., Density‐Functional Thermochemistry. III. The Role of Exact Exchange, J. Chem. Phys., 98: 5648–5652 (1993).

[18] Lee C.T., Yang W.T., Parr R.G.B., Development of the Colle-Salvetti Correlation-Energy Formula Into a Functional of the Electron Density, Phys. Rev. B, 37: 785–789 (1988).

[19] Frisch M.J., Trucks G.W,. Schlegel H.B.  et al., Gaussian 09, Gaussian, Pittsburgh, Pa, USA, (2009).

[20] Frisch A., Nelson A. B., Holder A. J., Gauss View, Gauss, Pittsburgh, Pa, USA, 2000. Pipek J.and Mezey P.Z., A Fast Intrinsic Localization Procedure Applicable for ab initio and Semiempirical Linear Combination of Atomic Orbital Wave Functions, J. Chem. Phys. 90:4916 (1989).

[21] Petersson D.A., Allaham M.A., A Complete Basis Set Model Chemistry. II. Open‐Shell Systems and the Total Energies of the First‐Row Atoms, J. Chem. Phys., 94:6081–6090 (1991).

[22] Petersson G.A., Bennett A., Tensfeldt T.G., Allaham M.A., Mantzaris W.A.J., Petersson G.A., Bennett A., Tensfeldt T.G., Al‐Laham M.A., Shirley W.A., A complete basis set model chemistry. I. The total energies of closed‐shell atoms and hydrides of the first‐row elements, J. Chem. Phys., 89:2193–2218 (1998).

[23] Glendening E.D., Landis C.R. and Weinhold F., Natural bond orbital methods, John Wiley & Sons, Ltd. WIREs,Comput. Mol. Sci. 2:1-42 (2011)..

[24] Parr R. G. and Yang W., Density-Functional Theory of Atom und Molecules, Oxford University Press, Oxford,(1989).

[25] Becke A. D., A new mixing of Hartree–Fock and local density‐functional theories, J. Chem. Phys. 98:1372, (1993).

[26] Kleinmann D.A., Nonlinear Dielectric Polarization in Optical Media, Phys. Rev. 126: 1977-1979 (1962).

[27] Fleming I., frontier Orbitals and Organic Chemical Reactions, John Wiley & Sons, New York, NY, USA, 1976.

[28] Murray J. S.  and Sen K., Molecular Electrostatic Potentials, Volume 3 1st Edition Concepts and Applications, Elsevier, Amsterdam, The Netherlands, 1996.

[29] Sponer J.  and Hobza P., DNA base amino groups and their role in molecular interactions: Ab initio and preliminary density functional theory calculations, International Journal of Quantum Chemistry, 57:959-970 (1996).

[30] Johnson B. G., Gill P. M. W. and Pople J. A., The performance of a family of density functional methods, J. Chem. Phys., 98:5612 (1993)  

[34] Beraldo H., Barreto A.M., Vieira R.P., Rebolledo A.P., Speziali N.L., Pinheiro C.B., Chepuis G., Structural Studies and Spectral Characteristics of 4-Benzoylpyridine Thiosemicarbazone and N(4′)-phenyl-4-benzoylpyridine Thiosemicarbazone, J. Mol. Struct., 645: 213–220 (2003).

[36] Chandra S., Saleem H., Sundaraganesan N., Sebastian S., The spectroscopic FT-IR gas phase, FT-IR, FT-Raman, polarizabilities analysis of Naphthoic acid by density functional methods, Spectrochim. Acta A 74:704 (2009).

[37]  Silverstein R.M., Webster F.X., Spectroscopic Identification of Organic Compound, 6th ed., John Willey & Sons, New York, 1998.

[38] Pulay P., Fogarasi G., Pang F., and Boggs J.E., Systematic ab initio gradient calculation of molecular geometries, force constants, and dipole moment derivatives, J. Am. Chem. Soc., 101:2550–2560 (1979).

[39] Chandran A., Varghese H.T., Mary Y.S., Panicker C.Y., Manojkumar T.K., Alsenoy C.V. and Rajendran G., FT-IR, FT-Raman and computational study of (E)-N-carbamimidoyl-4-((4-methoxybenzylidene)amino)benzenesulfonamide, Spectrochim. Acta. A Mol Biomol Spectrosc., 92:84-90 (2012).

[40] Gonohe N., Abe H., Mikami N. and Ito M., Two-color photoionization of van der Waals complexes of fluorobenzene and hydrogen-bonded complexes of phenol in supersonic jets, J. Phys. Chem., 89:3642-3648 (1985).