Biological, Electronic, NLO, NBO, TDDFT and Vibrational Analysis of 1-benzyl-4-formyl-1H-pyrrole-3-carboxamide

Document Type : Research Article

Authors

1 Govt. College Bishrampur Surajpur Chhattisgarh, INDIA

2 Sri Ramshwaroop Memorial Institute of Engineering and Management Lucknow, INDIA

3 The University of Dodoma, Dodoma, TANZANIA

Abstract

Biological Electronic, Optical Properties, and Vibrational Analysis of 1-benzyl-4-formyl-1H-pyrrole 3carboxamide are studied by using a combination of DFT/B3LYP method and 6-311G (d, p) basis set. Optimized parameters of the title molecule are well-matched with the experiments. The NLO properties of 1-benzyl-4-formyl-1H-pyrrole 3carboxamide have been examined with the help of Polarizability and Hyper-Polarizability. The electronic properties of 1-benzyl-4-formyl-1H-pyrrole 3carboxamide are described with the help of HOMO, LUMO composition. The UV spectra suggest that a strong excitation line occurs at 2.03 eV (160 nm) due to H-2→LUMO (30%). NBO analysis shows that hyper conjugative interaction energy has higher value during LP→ π*, π→ π* transitions. Several biological activities are calculated by PASS software. Docking of the molecule is performed with 5P4Q protein and FF score is -1051.65A.U.

Keywords

Main Subjects


[1] Misra N., Prasad O., Sinha L. Pandey A., Molecular Structure and Vibrational Spectra of 2-Formyl Benzonitrile by Density Functional Theory and ab Initio Hartree–Fock Calculations, Journal of Molecular Structure: Theochem, 822: 45-47 (2007).[
[2] Kumar A., Rawat P., Baboo V., Verma Di., Singh R.N., Saxena D., Gauniyal H.M., Pandey A. K. Pal H.,
A Combined Experimental and Quantum Chemical Studies on Molecular Structure, Spectral Properties, Intra and Intermolecular Interactions and First Hyperpolarizability of 4-(benzyloxy)benzaldehyde Thiosemicarbazone and Its Dimer, Journal of  Molecular Structure, 1034: 374-385 (2013).
[3] Carey F.A., Sundberg R.J., “Advanced Organic Chemistry, Part A: Structure and Mechanisms”,
5th ed
, Springer, New York, P. 806–808, 312–313 (2008).
[4] Hartner Jr F., Katritzky A., Rees C., Scriven E., “Comprehensive Heterocyclic Chemistry II”, ed. I. Shinkai, Pergamon, Oxford, 3, p. 4 (1996)
[5] Bhardwaj V., Gumber D. Abbot V. Dhiman S.  Sharma P., Pyrrole: A Resourceful Small Molecule
in Key Medicinal Hetero-Aromatics
, RSC Adv., 5: 15233-15266 (2015).
[6] Adams J.M. and Capecchi M.R..,N-Formylmethionyl-sRNA as the Initiator of Protein Synthesis, PNAS, 55(1):147–155 (1966).
[8] Toja E., Depaoli A., Tuan G., Kettenring J., Synthesis, 272-274 (1987).
[11] Kotaiah Y., Nagaraju K., Harikrishna N., Rao C. V., Yamini L., Vijjulatha M., Synthesis, Docking and Evaluation of Antioxidant and Antimicrobial Activities of novel 1,2,4-triazolo[3,4-b][1,3,4]thiadiazol-6-yl)selenopheno[2,3-d]pyrimidines, Eur. J. Med. Chem., 75: 195–202 (2014).
[12] Swamy S.N., Basappa, Priya B.S., Prabhuswamy B., Doreswamy B.H., Shahidhara J.S., Rangappa K. S., Synthesis of Pharmaceutically Important Condensed Heterocyclic 4,6-disubstituted-1,2,4-triazolo-1,3,4-Thiadiazole Derivatives as Antimicrobials, Eur. J. Med. Chem., 41:531–538 (2006).
[14] Demir A.S., Akhmedov I.M., Sesenoglu O., Synthesis of 1,2,3,5-tetrasubstituted Pyrrole Derivatives from 2-(2-bromoallyl)-1,3-dicarbonyl Compounds, Tetrahedron, 58: 9793-9799 (2002).
[15] Meshram H.M., Prasad B.R.V, Kumar D.A., A Green Approach for Efficient Synthesis of N-Substituted Pyrroles in Ionic Liquid under Microwave Irradiation, Tetrahedron Lett., 51: 3477- 3480 (2010).
[16] Zhong Q.D., Hu S., Yan H., Crystal Structure of 1-benzyl-4-formyl-1H-pyrrole-3-carb­oxamide, Acta Cryst. E, 72: 133–135 (2016).
[17] Becke A.D., Density‐Functional Thermochemistry. III. The Role of Exact Exchange, J. Chem. Phys., 98: 5648–5652 (1993).
[18] Lee C.T., Yang W.T., Parr R.G.B., Development of the Colle-Salvetti Correlation-Energy Formula Into a Functional of the Electron Density, Phys. Rev. B, 37: 785–789 (1988).
[19] Frisch M.J., Trucks G.W,. Schlegel H.B.  et al., Gaussian 09, Gaussian, Pittsburgh, Pa, USA, (2009).
[20] Frisch A., Nelson A. B., Holder A. J., Gauss View, Gauss, Pittsburgh, Pa, USA, 2000. Pipek J.and Mezey P.Z., A Fast Intrinsic Localization Procedure Applicable for ab Initio and Semiempirical Linear Combination of Atomic Orbital Wave Functions, J. Chem. Phys., 90: 4916-   (1989).
[21] Petersson D.A., Allaham M.A., A Complete Basis Set Model Chemistry. II. Open‐Shell Systems and the Total Energies of the First‐Row Atoms, J. Chem. Phys., 94:6081–6090 (1991).
[22] Petersson G.A., Bennett A., Tensfeldt T.G., Allaham M.A., Mantzaris W.A.J., Petersson G.A., Bennett A., Tensfeldt T.G., Al‐Laham M.A., Shirley W.A., A Complete Basis Set Model Chemistry. I. The Total Energies of Closed‐Shell Atoms and Hydrides of the First‐Row Elements, J. Chem. Phys., 89: 2193–2218 (1998).
[23] Glendening E.D., Landis C.R., Weinhold F., Natural Bond Orbital Methods, Comput. Mol. Sci., 2: 1-42 (2011).
[24] Parr R.G., Yang W., “Density-Functional Theory of Atom und Molecules”, Oxford University Press, Oxford,(1989).
[25] Becke A. D., A New Mixing of Hartree–Fock and Local Density‐Functional Theories, J. Chem. Phys., 98: 1372-1377 (1993).
[26] Kleinmann D.A., Nonlinear Dielectric Polarization in Optical Media, Phys. Rev., 126: 1977-1979 (1962).
[27] Fleming I., “Frontier Orbitals and Organic Chemical Reactions”, John Wiley & Sons, Inc., New York, NY, USA, (1976).
[28] Murray J.S., Sen K., “Molecular Electrostatic Potentials, “Volume 3, 1st ed., Concepts and Applications”, Elsevier, Amsterdam, The Netherlands, (1996).
[29] Sponer J., Hobza P., DNA Base Amino Groups and Their Role in Molecular Interactions: Ab Initio and Preliminary Density Functional Theory Calculations, International Journal of Quantum Chemistry, 57: 959-970 (1996).
[30] Johnson B.G., Gill P.M.W., Pople J.A., The Performance of a Family of Density Functional Methods, J. Chem. Phys., 98: 5612-   (1993).
[34] Beraldo H., Barreto A.M., Vieira R.P., Rebolledo A.P., Speziali N.L., Pinheiro C.B., Chepuis G., Structural Studies and Spectral Characteristics of 4-Benzoylpyridine Thiosemicarbazone and N(4′)-phenyl-4-benzoylpyridine Thiosemicarbazone, J. Mol. Struct., 645: 213–220 (2003).
[35] Stuart B.H., Infrared Spectroscopy: Fundamentals and Applications, John Wiley & Sons, Inc., England, (2004).
[36] Chandra S., Saleem H., Sundaraganesan N., Sebastian S., The spectroscopic FT-IR Gas Phase, FT-IR, FT-Raman, Polarizabilities Analysis of Naphthoic Acid by Density Functional Methods, Spectrochim. Acta A, 74: 704-713 (2009).
[37] Silverstein R.M., Webster F.X., “Spectroscopic Identification of Organic Compound”, 6th ed., John Willey & Sons, Inc., New York, (1998).
[38] Pulay P., Fogarasi G., Pang F., and Boggs J.E., Systematic ab Initio Gradient Calculation of Molecular Geometries, Force Constants, and Dipole Moment Derivatives, J. Am. Chem. Soc., 101: 2550–2560 (1979).
[39] Chandran A., Varghese H.T., Mary Y.S., Panicker C.Y., Manojkumar T.K., Alsenoy C.V. Rajendran G., FT-IR, FT-Raman and Computational Study of (E)-N-carbamimidoyl -4- ((4-methoxybenzylidene)amino) benzenesulfonamide, Spectrochim. Acta. A Mol Biomol Spectrosc., 92:84-90 (2012).
[40] Gonohe N., Abe H., Mikami N. and Ito M., Two-Color Photoionization of van der Waals Complexes of Fluorobenzene and Hydrogen-Bonded Complexes of Phenol in Supersonic Jets, J. Phys. Chem., 89: 3642-3648 (1985).