Protonation of Propene on Silica-Grafted Hydroxylated Molybdenum and Tungsten Oxide Metathesis Catalysts: A DFT Study

Document Type: Research Note

Authors

1 Department of Process Design and Construction, Faculty of Petrochemicals, Iran Polymer and Petrochemical Institute, P.O. Box 14975-112, Tehran, I.R. IRAN

2 Gas Conversion Department, Faculty of Petrochemicals, Iran Polymer and Petrochemical Institute, P.O. Box 14975-112 Tehran, I.R. IRAN

Abstract

Theoretical assessment of the protonation reaction in the activation of propene on hydroxylated Mo(VI) and W(VI) metathesis catalysts is presented in this paper using the density functional theory calculations and five support clusters varying from simple SiO4H3 clusters to a large Si4O13H9 cluster. The bond distances and thermochemical data were similar for most of the clusters. The formation of isopropoxide was more favorable than a propoxide counterpart bonded via the primary carbon atom, with the Gibbs free energies of –3.73 and –7.78 kcal/mol, respectively, for the W catalyst. Overall, the 1T cluster models with optimized H atoms or an all-relaxed alternative would be considered appropriate replacements for a larger 4T cluster model saturated with OH groups and optimized terminal hydrogen atoms. The largest deviations in the energetic data were observed between the protonated structures formed on the two larger clusters saturated with either OH or H groups. 

Keywords

Main Subjects


[1] Ghashghaee M., Shirvani S., Two-step Thermal Cracking of an Extra-Heavy Fuel Oil: Experimental Evaluation, Characterization, and Kinetics, Ind. Eng. Chem. Res., 57(22): 7421–7430 (2018).

[2] Ghashghaee M., Karimzadeh R., Multivariable Optimization of Thermal Cracking Severity, Chem. Eng. Res. Des., 89(7): 1067–1077 (2011).

[3] Ghashghaee M., Karimzadeh R., Applicability of Protolytic Mechanism to Steady-State Heterogeneous Dehydrogenation of Ethane Revisited, Micropor. Mesopor. Mat., 170: 318–330 (2013).

[4] Hajheidary M., Ghashghaee M., Karimzadeh R., Olefins Production from LPG via Dehydrogenative Cracking over Three ZSM-5 Catalysts, J. Sci. Ind. Res., 72(12): 760–766 (2013).

[5] Karimzadeh R., Ghashghaee M., Design of a Flexible Pilot Plant Reactor for the Steam Cracking Process, Chem. Eng. Technol., 31(2): 278–286 (2008).

[6] Shirvani S., Ghashghaee M., Combined Effect of Nanoporous Diluent and Steam on Catalytic Upgrading of Fuel Oil to Olefins and Fuels over USY Catalyst, Petrol. Sci. Technol., 36(11): 750–755 (2018).

[7] Ghashghaee M., Karimzadeh R., Dynamic Modeling and Simulation of Steam Cracking Furnaces, Chem. Eng. Technol., 30(7): 835–843 (2007).

[8] Sedighi M., Keyvanloo K., Towfighi Darian J., Olefin Production from Heavy Liquid Hydrocarbon Thermal Cracking: Kinetics and Product Distribution, Iran. J. Chem. Chem. Eng. (IJCCE), 29(4): 135–147 (2010).

[9] Ghashghaee M., Heterogeneous Catalysts for
Gas-phase Conversion of Ethylene to Higher Olefins
, Rev. Chem. Eng.: DOI: 10.1515/revce-2017-0003 (2017).

[8] Ghashghaee M., Farzaneh V., Nanostructured Hydrotalcite-Supported RuBaK Catalyst for Direct Conversion of Ethylene to Propylene, Russ. J. Appl. Chem., 91(6): 970−974 (2018).

[11] Lwin S., Wachs I.E., Olefin Metathesis by Supported Metal Oxide Catalysts, ACS Catal., 4(8): 2505–2520 (2014).

[12] Fierro J.L.G., “Metal Oxides: Chemistry and Applications”, CRC Press, Taylor & Francis Group, Boca Raton (2006).

[13] Amakawa K., Wrabetz S., Kröhnert J., Tzolova-Müller G., Schlögl R., Trunschke A., In Situ Generation of Active Sites in Olefin Metathesis, J. Am. Chem. Soc., 134(28): 11462–11473 (2012).

[14] Handzlik J., Kurleto K., Theoretical Investigations of Heterogeneous Olefin Metathesis Catalysts, Curr. Org. Chem., 17(22): 2796–2813 (2013).

[15] Handzlik J., Sautet P., Structure of Dimeric Molybdenum(VI) Oxide Species on γ-Alumina: A Periodic Density Functional Theory Study, J. Phys. Chem. C, 114(45): 19406–19414 (2010).

[16] Handzlik J., Computational Study of the Properties and Metathesis Activity of Mo Methylidene Species in HZSM-5 Zeolite, J. Mol. Catal. A-Chem., 316(1–2): 106–111 (2010).

[17] Handzlik J., Ogonowski J., Structure of Isolated Molybdenum(VI) and Molybdenum(IV) Oxide Species on Silica: Periodic and Cluster DFT Studies, J. Phys. Chem. C, 116(9): 5571–5584 (2012).

[18] Maihom T., Probst M., Liktrakul J., A DFT Study of Tungsten–Methylidene Formation on a W/ZSM-5 Zeolite: The Metathesis Active Site, Chem. Phys. Chem., 16(15): 3334–3339 (2015).

[19] Amakawa K., “Active Site for Propene Metathesis in Silica-Supported Molybdenum Oxide Catalysts”, Department of Inorganic Chemistry: Technischen Universität Berlin (2013).

[20] Amakawa K., Kröhnert J., Wrabetz S., Frank B., Hemmann F., Jäger C., Schlögl R., Trunschke A., Active Sites in Olefin Metathesis over Supported Molybdena Catalysts, Chem. Cat. Chem., 7(24): 4059–4065 (2015).

[21] Amakawa K., Sun L., Guo C., Hävecker M., Kube P., Wachs I.E., Lwin S., Frenkel A.I., Patlolla A., Hermann K., Schlögl R., Trunschke A., How Strain Affects the Reactivity of Surface Metal Oxide Catalysts, Angew. Chem. Int. Edit., 52(51): 13553–13557 (2013).

[22] Lavrenov A.V., Saifulina L.F., Buluchevskii E.A., Bogdanets E.N., Propylene Production Technology: Today and Tomorrow, Catal. Ind., 7(3): 175–187 (2015).

[23] Butler J.R., Metathesis Catalyst for Olefin Production, US Patent, (US 12/568,958), US20110077444 A1 (2011).

[24] Sindorf D.W., Maciel G.E., Silicon-29 NMR Study of Dehydrated/Rehydrated Silica Gel Using Cross Polarization and Magic-Angle Spinning, J. Am. Chem. Soc., 105(6): 1487–1493 (1983).

[25] Zhang B., Lu Y., He H., Wang J., Zhang C., Yu Y., Xue L., Experimental and Density Functional Theory Study of the Adsorption of N2O on Ion-Exchanged ZSM-5: Part II. The Adsorption of N2O on Main-Group Ion-Exchanged ZSM-5, J. Environ. Sci., 23(4): 681–686 (2011).

[26] Balar M., Azizi Z., Ghashghaee M., Theoretical Identification of Structural Heterogeneities of Divalent Nickel Active Sites in NiMCM-41 Nanoporous Catalysts, J. Nanostruct. Chem., 6(4): 365–372 (2016).

[27] Ghashghaee M., Ghambarian M., Azizi Z., Characterization of Extraframework Zn2+ Cationic Sites in Silicalite-2: a Computational Study, Struct. Chem., 27(2): 467–475 (2016).

[28] Ghambarian M., Azizi Z., Ghashghaee M., Diversity of Monomeric Dioxo Chromium Species in Cr/Silicalite-2 Catalysts: A Hybrid Density Functional Study, Comp. Mater. Sci., 118: 147–154 (2016).

[29] Ghambarian M., Azizi Z., Ghashghaee M., Cluster Modeling and Coordination Structures of Cu+ Ions in Al-Incorporated Cu-MEL Catalysts – A Density Functional Theory Study, J. Mex. Chem. Soc., 61(1): 1–13 (2017).

[30] Ghambarian M., Ghashghaee M., Azizi Z., Coordination and Siting of Cu+ Ion Adsorbed into Silicalite-2 Porous Structure: A Density Functional Theory Study, Phys. Chem. Res., 5(1): 135–152 (2017).

[31] Valiev M., Bylaska E.J., Govind N., Kowalski K., Straatsma T.P., Van Dam H.J.J., Wang D., Nieplocha J., Apra E., Windus T.L., de Jong W.A., NWChem: A Comprehensive and Scalable Open-Source Solution for Large Scale Molecular Simulations, Comput. Phys. Commun., 181(9): 1477–1489 (2010).

[32] Lu T., Chen F., Multiwfn: A Multifunctional Wavefunction Analyzer, J. Comput. Chem., 33(5): 580–592 (2012).

[33] Bruno I.J., Cole J.C., Edgington P.R., Kessler M., Macrae C.F., McCabe P., Pearson J., Taylor R.,
New Software for Searching the Cambridge Structural Database and Visualizing Crystal Structures, Acta Crystallogr. B, 58(3 Part 1): 389–397 (2002).

[35] Feller D., The Role of Databases in Support of Computational Chemistry Calculations, J. Comput. Chem., 17(13): 1571–1586 (1996).

[36] Yumura T., Yamashita H., Torigoe H., Kobayashi H., Kuroda Y., Site-Specific Xe Additions Into Cu-ZSM-5 Zeolite, Phys. Chem. Chem. Phys., 12(10): 2392–2400 (2010).

[37] Göltl F., Hafner J., Structure and Properties of Metal-Exchanged Zeolites Studied Using Gradient-Corrected and Hybrid Functionals. I. Structure and Energetics, J. Chem. Phys., 136(6): 064501-064501–064501-064517 (2012).

[39] Fukui K., Yonezawa T., Shingu H., A Molecular Orbital Theory of Reactivity in Aromatic Hydrocarbons, J. Chem. Phys., 20(4): 722–725 (1952).

[40] Glendening E., Badenhoop J., Reed A., Carpenter J., Weinhold F., “NBO 3.1”, Theoretical Chemistry Institute, University of Wisconsin, Madison, WI:  (1996).

[41] Datta D., On Pearson’s HSAB Principle, Inorg. Chem., 31(13): 2797–2800 (1992).