Thermodynamic Assessment and Optimization of Performance of Irreversible Atkinson Cycle

Document Type : Research Article

Authors

1 Faculty of Mechanical Engineering, Shahrood University of Technology, Shahrood, I.R. IRAN

2 Department of Renewable Energies and Environmental, Faculty of New Sciences and Technologies, University of Tehran, Tehran, I.R. IRAN

Abstract

Although various investigations of Atkinson cycle have been carried out, distinct output power and thermal efficiencies of the engine have been achieved. In this regard, thermal efficiency, Ecological Coefficient of Performance (ECOP), and Ecological function (ECF) are optimized with the help of NSGA-II method and thermodynamic study.  The Pareto optimal frontier which provides an ultimate optimum solution is chosen utilizing various decision-making approaches, containing fuzzy Bellman-Zadeh, LINMAP, and TOPSIS. With the help of the results, interpreting the performances of Atkinson cycles and their optimization is enhanced. Error analysis has also been performed for verification of optimization and determining the deviation in the study.

Keywords

Main Subjects


[1] Wikipedia: Atkinson Cycle. Available via DIALOG. http://www.answers.com/topic/atkinson-cycle. Cited 15 Dec 2008
[2] Andresen B., Berry R.S., Jo Ondrechen M., Salamon P., Thermodynamics for Processes in Finite Time, Accounts of Chemical Research, 17(8): 266-271 (1984).
[3] Sieniutycz S., Shiner J.S., Thermodynamics of Irreversible Processes and Its Relation to Chemical Engineering: Second Law Analyses and Finite Time Thermodynamics, Journal of Non-Equilibrium Thermodynamics, 19(4): 303-348 (1994).
[5] Berry R. S., Kazakov V.A., Sieniutycz S., Szwast Z., Tsirlin A.M., "Thermodynamic Optimization of Finite Time Processes", (1999).
[6] Chen L., Wu Ch., Sun F., Finite Time Thermodynamic Optimization or Entropy Generation Minimization of Energy Systems, Journal of Non-Equilibrium Thermodynamics, 24(4): 327-359 (1999).
[7] Durmayaz A., Sogut O.S., Sahin B., Yavuz H, Optimization of Thermal Systems Based on Finite-Time Thermodynamics and Thermoeconomics, Progress in Energy and Combustion Science, 30(2): 175-217 (2004).
[8] Wu Z.X., Chen L.G., Feng H.J., Thermodynamic Optimization for an Endoreversible Dual-Miller Cycle (DMC) with Finite Speed of Piston, Entropy, 20(3): 165-183 (2018).
[9] Ge Y.L., Chen L.G., Qin X.Y., Effect of Specific Heat Variations on Irreversible Otto Cycle Performance, Int. J. Heat Mass Transf., 122: 403-409 (2018).
[12] Ge Y.L., Chen L.G., Sun F.R., Progress in Finite Time Thermodynamic Studies for Internal Combustion Engine Cycles, Entropy, 18(4): 139 (2016).
[13] Harvey S. L., Thermal Efficiency at Maximum Work Output: New Results for Old Heat Engines, American Journal of Physics, 55(7): 602-610 (1987).
[14] Al-Sarkhi, A.m., Akash b., Jaber J., Mohsen M.S., Abu-Nada E., Efficiency of Miller Engine at Maximum Power Density, International Communications in Heat and Mass Transfer, 29(8): 1159-1167  (2002).
[16] Kamiuto K., Comparison of Basic Gas Cycles under the Restriction of Constant Heat Addition, Applied Energy, 83(6): 583-593  (2006).
[17] Zhao Y., Chen J., Performance Analysis and Parametric Optimum Criteria of an Irreversible Atkinson Heat-Engine, Applied Energy, 83(8): 789-800 (2006).
[18] Hajipour A., Rashidi M.M., Ali M., Yang Z., Anwar Bég O., Thermodynamic Analysis and Comparison of the Air-Standard Atkinson and Dual-Atkinson Cycles with Heat Loss, Friction and Variable Specific Heats of Working Fluid, Arabian Journal for Science And Engineering 41(5): 1635-1645  (2016).
[19] Gonca, Guven, Bahri Sahin, Yasin Ust., Investigation of Heat Transfer Influences on Performance of Air-Standard Irreversible Dual-Miller Cycle, Journal of Thermophysics and Heat Transfer, 29(4): 678-683 (2015).
[21] Hou, Shuhn-Shyurng, Comparison of Performances of Air Standard Atkinson and otto Cycles with Heat Transfer Considerations, Energy Conversion and Management, 48(5): 1683-1690 (2007).
[23] Lin, Jiann-Chang, Shuhn-Shyurng Hou, Influence of Heat Loss on The Performance of an Air-Standard Atkinson Cycle, Applied Energy, 84(9): 904-920 (2007).
[24] Wang, Chao, Lingen Chen, Yanlin Ge, Fengrui Sun, Performance Analysis of an Endoreversible Rectangular Cycle with Heat Transfer Loss and Variable Specific Heats of Working Fluid, International Journal of Energy and Environment, 6(1): 73-80 (2015).
[26] Sahin B., Kodal A., Yavuz H., Efficiency of a Joule-Brayton Engine at Maximum Power Density,  Journal of Physics D: Applied Physics, 28(7): 1309-  (1995).
[27] Bahri S., Kodal A., Yilmaz T., Yavuz H., Maximum Power Density Analysis of an Irreversible Joule-Brayton Engine, Journal of Physics D: Applied Physics, 29(5): 1162-  (1996).
[28] Bahri̇ S., ̇ Kodal A., Yavuz H., Maximum Power Density for an Endoreversible Carnot Heat Engine, Energy, 21(12): 1219-1225 (1996).
[29] Bahri S., Kodal A., Yavuz H., A Performance Analysis for MHD Power Cycles Operating At Maximum Power Density, Journal of Physics D: Applied Physics,29(6): 1473-   (1996).
[30] Medina A., Roco J.M.M., Calvo Hernández A., Regenerative Gas Turbines at Maximum Power Density Condition, Journal of Physics D: Applied Physics, 29(11): 2802 (1996).
[32] Kodal A., Maximum Power Density Analysis for Irreversible Combined Carnot Cycles, Journal
of Physics D: Applied Physics
, 32(22): 2958- (1999).
[33] Koda A., Sahin B., Yilmaz T., A Comparative Performance Analysis of Irreversible Carnot Heat Engines under Maximum Power Density and Maximum Power Conditions, Energy Conversion and Management, 41(3): 235-248 (2000).
[34] Chen L., Zheng J., Sun F., Wu Ch., Optimum Distribution of Heat Exchanger Inventory for Power Density Optimization of an Endoreversible Closed Brayton Cycle, Journal of Physics D: Applied Physics, 34(3): 422-  (2001).
[35] Chen L., Zheng J., Sun F., Wu Ch., Power Density Optimization for an Irreversible Closed Brayton Cycle, Open Systems & Information Dynamics, 8 (03): 241-260 (2001).
[36] Chen L.-G., Zheng J.-L., Sun F.-R., Wu Ch., Power Density Optimization for an Irreversible Regenerated Closed Brayton Cycle, Physica Scripta, 64(3): 184   (2001).
[38] Sahin B., Kesgin U., Kodal A., Vardar N., Performance Optimization of a New Combined Power Cycle Based on Power Density Analysis of the Dual Cycle, Energy Conversion and Management, 43(15): 2019-2031(2002).
[39] Chen L., Lin J., Sun F., Wu Ch., Efficiency of an Atkinson Engine at Maximum Power Density, Energy Conversion and Management, 39(3): 337-341 (1998).
[41] Veldhuizen D.A.V., Lamont G.B., Multi-objective Evolutionary Algorithms: Analyzing the State-of-the-Art, Evolutionary Computation, 8: 125-147 (2000).
[42] Konak A., Coit D.W., Smith A.E., Multi-Objective Optimization Using Genetic Algorithms: A Tutorial, Reliability Engineering & System Safety, 91: 992-1007 (2006)
[43] Bck T., Fogel D., Michalewicz Z., “Handbook of Evolutionary Computation”, Oxford Univ. Press, (1997).
[45] Ashouri M., Ahmadi M.H., Pourkiaei S.M., Razi Astaraei F., Ghasempour R., Ming T., Haj Hemati J., Exergy and Exergo-Economic Analysis and Optimization of a Solar Double Pressure Organic Rankine Cycle, Thermal Science and Engineering Progress, 6: 72-86 (2018).
[46] Ahmadi M.H., Sayyaadi H., Dehghani S., Hosseinzade H., Designing a Solar Powered Stirling Heat Engine Based on Multiple Criteria: Maximized Thermal Efficiency and Power, Energy Conversion and Management, 75: 282-291 (2013).
[48] Ahmadi M.H., Sayyaadi H., Mohammadi A.H., Barranco-Jimenez M.A., Thermo-Economic Multi-Objective Optimization of Solar Dish-Stirling Engine by Implementing Evolutionary Algorithm, Energy Conversion and Management, 73: 370-380(2013).
[49] Hooshang M., Toghyani S., Kasaeian A., Askari Moghadam R., Ahmadi M.H., Enhancing and Multi-Objective Optimising of the Performance of Stirling Engine Using Third-Order Thermodynamic Analysis, International Journal of Ambient Energy, 39(4): 382-391 (2018).
[50] Ahmadi M.H., Mehrpooya M., Abbasi S., Pourfayaz F., Carles Bruno J., Thermo-Economic Analysis and Multi-Objective Optimization of a Transcritical CO2 Power Cycle Driven by Solar Energy and LNG Cold Recovery, Thermal Science and Engineering Progress, 4: 185-196 (2017).
[51] Ahmadi M.H., Ahmadi M.A., Bayat R., Ashouri M., Feidt M., Thermo-Economic Optimization of Stirling Heat Pump by Using Non-Dominated Sorting Genetic Algorithm, Energy Convers Manage, 91: 315-22 (2015).
 [52] Ahmadi M.H., Ahmadi M.A., Mellit A., Pourfayaz F., Feidt M., Thermodynamic Analysis and Multi Objective Optimization of Performance of Solar Dish Stirling Engine by the Centrality of Entransy and Entropy Generation, International Journal of Electrical Power & Energy Systems, 78: 88-95 (2016).
[53] Toghyani S., Kasaeian A., Ahmadi M.H., Multi-Objective Optimization of Stirling Engine Using Non-Ideal Adiabatic Method, Energy Conversion and Management, 80: 54-62 (2014).
[54] Ahmadi M.H., Ahmadi M.A., Pourfayaz F., Bidi M., Thermodynamic Analysis and Optimization for an Irreversible Heat Pump Working on Reversed Brayton Cycle, Energy Conversion and Management, 110: 260-267 (2016).
[55] Ahmadi M.H., Ahmadi M.A., Mehrpooya M., Feidt M., Rosen M.A., Optimal Design of an Otto Cycle Based on Thermal Criteria, Mechanics & Industry, 17(1): 111-   (2016).
[57] Ahmadi M.H., Ahmadi M.A., Mohammadi A.H., Mehrpooya M., Feidt M., Thermodynamic Optimization of Stirling Heat Pump Based on Multiple Criteria, Energy Conversion and Management 80: 319–328 (2014).
[58] Ahmadi MH., Mohammadi A.H., Dehghani S., Barranco-Jimenez M.A., Multi-Objective Thermodynamic-Based Optimization of Output Power of Solar Dish-Stirling Engine by Implementing an Evolutionary Algorithm,  Energy Conversion and Management, 75: 438-445 (2013).
[59] Ahmadi M. H., Mohammadi A.H., Pourkiaei S.M., Optimisation of the Thermodynamic Performance of the Stirling Engine, International Journal of Ambient Energy, (2014).
        DOI: 10.1080/01430750.2014.907211
[60] Sayyaadi H., Ahmadi M.H., Dehghani S., Optimal Design of a Solar-Driven Heat Engine Based on Thermal and Ecological Criteria, Journal of Energy Engineering: 04014012 (2014).
[61] Sahraie H., Mirani M.R., Ahmadi M.H., Ashouri M., Thermo-Economic and Thermodynamic Analysis and Optimization of a Two-Stage Irreversible Heat Pump, Energy Conversion and Management, 99: 81-91  (2015).
[62] Ahmadi M.H., Ahmadi M.A., Mehrpooya M., Hosseinzade H., Feidt M., Thermodynamic and Thermo-Economic Analysis and Optimization of Performance of Irreversible Four-Temperature-Level Absorption Refrigeration, Energy Conversion and Management, 88: 1051-1059  (2014).
[63] Ahmadi M.H., Ahmadi M.A., Thermodynamic Analysis and Optimization of an Irreversible Ericsson Cryogenic Refrigerator Cycle, Energy Conversion and Management, 89: 147-155 (2015).
[64] Ahmadi M.H., Ahmadi M.A., Mehrpooya M., Sameti M., Thermo-Ecological Analysis and Optimization Performance of an Irreversible Three-Heat-Source Absorption Heat Pump, Energy Conversion and Management, 90: 175-183 (2015).
[65] Ahmadi M.H., Ahmadi M.A., Feidt M., Performance Optimization of a Solar-Driven Multi-Step Irreversible Brayton Cycle Based on a Multi-Objective Genetic Algorithm, Oil & Gas Science and Technology–Revue D’ifp Energies Nouvelles, 71(1): 16-  (2016).
[67] Sadatsakkak S.A., Ahmadi M.H., Ahmadi M.A., Thermodynamic and Thermo-Economic Analysis and Optimization of an Irreversible Regenerative Closed Brayton Cycle, Energy Conversion and Management, 94: 124-129 (2015).
[68] Sadatsakkak S.A., Ahmadi M.H., Bayat R., Pourkiaei S.M., Feidt M., Optimization Density Power and Thermal Efficiency of an Endoreversible Braysson Cycle by Using Non-Dominated Sorting Genetic Algorithm, Energy Conversion and Management, 93: 31-39 (2015).
[69] Ahmadi M.H., Ahmadi M.A., Sadatsakkak S.A., Thermodynamic Analysis and Performance Optimization of Irreversible Carnot Refrigerator by Using Multi-Objective Evolutionary Algorithms (Moeas), Renewable and Sustainable Energy Reviews, 51: 1055-1070 (2015).
[70] Ahmadi M.H., Mehrpooya M., Thermo-Economic Modeling and Optimization of an Irreversible Solar-Driven Heat Engine, Energy Conversion and Management, 103: 616-622 (2015).
[71] Ahmadi M.H., Ahmadi M.A., Pourfayaz F., Performance Assessment and Optimization of an Irreversible Nano-Scale Stirling Engine Cycle Operating with Maxwell-Boltzmann Gas, The European Physical Journal Plus, 130(9): 1-13 (2015).
[72] Ahmadi M.H., Ahmadi M.A., Shafaei A., Ashouri M., Toghyani S., Thermodynamic Analysis and Optimization of the Atkinson Engine by Using NSGA-II, International Journal of Low-Carbon Technologies, Ctv001 (2015).
[73] Ahmadi M.H., Dehghani S., Mohammadi A.H., Feidt M., Barranco-Jimenez M.A., Optimal Design of a Solar Driven Heat Engine Based on Thermal and Thermo-Economic Criteria, Energy Conversion and Management, 75: 635-642 (2013).
[75] Ahmadi M.H., Ahmadi M.A., Multi Objective Optimization of Performance of Three-Heat-Source Irreversible Refrigerators-Based Algorithm NSGAII, Renewable and Sustainable Energy Reviews, 60: 784-794 (2016).
[76] Jokar M.A., Ahmadi M.H., Sharifpur M., Meyer J.P., Pourfayaz F., Ming T., Thermodynamic Evaluation and Multi-Objective Optimization of Molten Carbonate Fuel Cell-Supercritical CO2 Brayton Cycle Hybrid System, Energy Conversion and Management, 153: 538-556 (2017).
[77] Ahmadi M.H., Ahmadi M.A., Maleki A., Pourfayaz F., Bidi M., Açıkkalp E., Exergetic Sustainability Evaluation and Multi-Objective Optimization of Performance of an Irreversible Nanoscale Stirling Refrigeration Cycle Operating with Maxwell–Boltzmann Gas, Renewable and Sustainable Energy Reviews ,78: 80-92 (2017).
[79] Ahmadi M.H., Nabakhteh M.A., Ahmadi M.A., Pourfayaz F., Bidi M., Investigation and Optimization of Performance of Nano-Scale Stirling Refrigerator Using Working Fluid as Maxwell–Boltzmann Gases, Physica A: Statistical Mechanics And Its Applications, 483: 337-350 (2017).
[80] Ahmadi M.H., Mehrpooya M., Abbasi S., Pourfayaz F., Bruno J.C., Thermo-Economic Analysis and Multi-Objective Optimization of a Transcritical CO2 Power Cycle Driven by Solar Energy and LNG Cold Recovery, Thermal Science and Engineering Progress, 4: 185-196 (2017).
[81] Mamaghani Haghighat A.R., Najafi B., Shirazi A., Rinaldi F., Exergetic, Economic, and Environmental Evaluations and Multi-Objective Optimization of a Combined Molten Carbonate Fuel Cell-Gas Turbine System, Applied Thermal Engineering, 77: 1-11 (2015).
[83] Kumar R., Kaushik S.C., Kumar R., Hans R., Multi-Objective Thermodynamic Optimization of an Irreversible Regenerative Brayton Cycle Using Evolutionary Algorithm and Decision Making, Ain Shams Engineering Journal, 7(2): 741-753 (2015).
[84] Abu-Nada, E., et al., Thermodynamic Modeling of Spark-Ignition Engine: Effect of Temperature Dependent Specific Heats, Int. Comm. Heat Mass Transfer, 32 (8): 1045-1056 (2005).
[85] Zhao Y., Lin B., Zhang Y., Chen J., Performance Analysis and Parametric Optimum Design of an Irreversible Diesel Heat Engine, Energy Conversion and Management, 47(18-19): 3383-3392
(2006).
[86] Zhao Y., Chen J., An Irreversible Heat Engine Model Including Three Typical Thermodynamic Cycles and Their Optimum Performance Analysis, International Journal of Thermal Sciences, 46(6): 605-613 (2007).
[87] Zhao Y., Chen J., Performance Analysis of an Irreversible Miller Heat Engine and its Optimum Criteria, Applied Thermal Engineering, 27(11-12): 2051-2058 (2007).
[90] Ge Y., Chen L., Sun F., Finite Time Thermodynamic Modeling and Analysis for an Irreversible Diesel Cycle, Proceedings, Imeche, Part D: J. Automobile Engineering, 222, D5: 887-894 (2008).
[91] Ge Y., Chen L., Sun F., Finite-Time Thermodynamic Modelling and Analysis of an Irreversible otto-Cycle, Applied Energy 85(7): 618-624 (2008).
[92] Chen L., Ge Y., Sun F., Wu Ch., Effects of Heat Transfer, Friction and Variable Specific Heats of Working Fluid on Performance of an Irreversible Dual Cycle, Energy Conversion and Management 47(18-19): 3224-3234 (2006).
[93] Ge Y., Chen L., Sun F., Wu C., Thermodynamic Simulation of Performance of an otto Cycle with Heat Transfer and Variable Specific Heats of Working Fluid, International Journal of Thermal Sciences, 44(5): 506-511 (2005).
[94] Ge Y., Chen L., Sun F., Wu C., The Effects of Variable Specific Heats of Working Fluid on the Performance of an Irreversible otto Cycle, International Journal of Exergy, 2(3): 274-283 (2005).
[95] Ge Y., Chen L., Sun F., Wu C., Performance of an Endoreversible Diesel Cycle with Variable Specific Heats Working Fluid, International Journal of Ambient Energy, 29(3): 127-136 (2008).
[96] Ge Y.L., Chen L.G., Sun F.R., Wu C., Performance of Diesel Cycle with Heat Transfer, Friction and Variable Specific Heats of Working Fluid, Journal of the Energy Institute, 80(4): 239-242 (2007).
[97] Ge Y., Chen L., Sun F., Wu C., Performance of Reciprocating Brayton Cycle with Heat Transfer, Friction and Variable Specific Heats of Working Fluid, International Journal of Ambient Energy, 29(2): 65-74 (2008).
[98] Ge Y., Chen L., Sun F., Wu C., Effects of Heat Transfer and Variable Specific Heats of Working Fluid on Performance of a Miller Cycle, International Journal of Ambient Energy, 26(4): 203-214 (2005).
[99] Chen L., Ge Y., Sun F., Unified Thermodynamic Description and Optimization for a Class of Irreversible Reciprocating Heat Engine Cycles, Proceedings, Imeche, Part D: J. Automobile Engineering, 222 D8: 1489-1500 (2008).
[100] Al-Sarkhi A., Jaber J.O., Abu-Qudais M., Probert S.D., Effects of Friction and Temperature-Dependent Specific-Heat of the Working Fluid on the Performance of a Diesel-Engine, Appl. Energy, 83(2): 153-165 (2006).
[101] Al-Sarkhi A., Jaber J.O., Probert S.D., Efficiency of a Miller Engine, Applied Energy, 83(4): 343-351 (2006).
[102] Qin X., Chen L., Sun F., Wu C., The Universal Power and Efficiency Characteristics for Irreversible Reciprocating Heat Engine Cycles, European Journal of Physics, 24(4): 359-   (2003).
[103] Ge Y., Chen L., Sun F., Wu C., Reciprocating Heat-Engine Cycles, Applied Energy, 81(4): 397-408 (2005).
[104] Ge Y.L., Chen L.G., Sun F.R., Wu C., Performance of Endoreversible Atkinson Cycle, Journal of the Energy Institute, 80(1): 52-54 (2007).
[105] Ge Y., Chen L., Sun F., Wu C., Performance of an Atkinson Cycle with Heat Transfer, Friction and Variable Specific-Heats of the Working Fluid, Applied Energy, 83(11): 1210-1221 (2006).
[106] Ge Y., Chen L., Sun F., Finite Time Thermodynamic Modeling and Analysis for an Irreversible Atkinson Cycle, Thermal Science, 14(4): 887-896 (2010).