Simulation of Bioreactors for PHB Production from Natural Gas

Document Type: Review Article

Authors

1 Department of Food Technology Research, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, P.O. Box 19395 Tehran, I.R. IRAN

2 Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, I.R. IRAN

3 School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, I.R. IRAN

4 Department of Chemical Engineering, Faculty of Engineering, North Tehran Branch, Islamic Azad University,Tehran, I.R. IRAN

5 University of Graz, Institute of Chemistry, NAWI Graz, Heinrichstrasse 28, A-8010 Graz, AUSTRIA

Abstract

Recently, many economic studies of poly(3-hydroxybutyrate) PHB production on an industrial scale, and the impact of replacing petrochemical polymers by PHB were carried out, clearly indicating that the most crucial factors to reduce the cost of producing biopolymers are allotted to the application of microbial production strains capable of high productivity in inexpensive carbon sources, high cell density cultivation methods, cheap yet effective methods for the extraction of PHB and other polyhydroxyalkanoates (PHAs), and gene transfer from bacteria to plants. We present current strategies to reduce the production price of biological PHA. Because an important part of the PHA production cost is related to the cost of carbon source, the article focuses on the use of natural gas as an inexpensive and readily available C1-carbon source. Since the first and foremost point in PHA production is biomass growth, we discuss different types of bioreactors to be potentially used for efficient biomass production from natural gas, which facilitates the subsequent selection of the ideal bioreactor for PHA production from this substrate. Nowadays, process simulation software can be used as a powerful tool for analysis, optimization, design, and scale up of bioprocesses. Controlling the process design by in silico simulations instead of performing an excessive number of lab-scale experiments to optimize various factors to save in time, material and equipment. Simulation of PHA production processes to find the optimal conditions can play a decisive role in increasing the production efficiency. Computational fluid dynamics and mathematical modeling helps us to achieve a better understanding of the role of different nutrients, flow parameters of gaseous substrates, efficient feeding strategies, etc. This finding leads to higher productivity by prediction of parameters e.g. nutrient supply and biomass concentration time profile and their respective yields.

Keywords

Main Subjects


[1] Reddy C., Ghai R., Kalia V.C., Polyhydroxyalkan-Oates: an Overview, Bioresour. Technol., 87(2): 137-146 (2003).

[2] Mas-Castella J., Urmeneta J., Lafuente R., Navarrete A., Guerrero R., Biodegradation of Poly-β-Hydroxyalkanoates in Anaerobic Sediments, Int. Biodeter. Biodegrad., 35(1-3): 155-174 (1995).

[3] Schlegel H., Gottschalk G., Von Bartha R., Formation and Utilization of Poly-beta-hydroxybutyric Acid by Knallgas Bacteria (Hydrogenomonas), Nature, 191(4787): 463-465 (1961).

[5] Brandl H., Gross R.A., Lenz R.W., Fuller R.C., Plastics from Bacteria and for Bacteria: Poly(beta-hydroxyalkan- oates) as Natural, Biocompatible, and Biodegradable Polyesters, Microb. Bioprod., 77-93 (1990).

[7] Koller M., Marsalek L., Miranda de Sousa Dias M., Braunegg G., Producing microbial polyhydroxyalkanoate (PHA) biopolyesters in a sustainable manner. New Biotechnol., 37: 24-38 (2017).

[8] Li, D., Lv L, Chen JC, Chen GQ, Controlling microbial PHB synthesis via CRISPRi. Appl. Microb. Biotechnol, 101 (14):    -    (2017).

[9] Kumagai, Y., Doi, Y., Enzymatic degradation of binary blends of microbial poly (3-hydroxybutyrate) with enz-ymatically active polymers, Pol. Degrad. Stab., 37(3): p. 253-256 (1992).

[11] Aminabhavi T., Balundgi R., Cassidy P., a review on biodegradable plastics. Pol. Plast. Technol. Eng., 29(3):  235-262 (1990).

[12] Kamaev P.P., Iordanski A.L., Aliev I.I., Wasser-mana A.M., Hanggi U., Transport water and molecular mobility in novel barrier membranes with different mor-phology features. Desalin., 126(1-3): 153-157 (1999).

[13] Saad B., Neuenschwandera P., Uhlschmid G. K., Sutera U.W., New versatile, elastomeric, degradable polymeric materials for medicine.Int. J. Biol. Macromol., 25(1): 293-301 (1999).

[14] Gouda M.K., Swellam A.E., Omar S.H.,  Production of PHB by a  Bacillus megaterium strain using sugar-cane molasses and corn steep liquor as sole carbon and nitrogen sources. Microbiol. Res., 156(3): 201-207 (2001).

[15] Kaur G., Roy I., Strategies for large-scale production of polyhydroxyalkanoates. Chem. Biochem. Eng. Q., 29(2): 157-172 (2015).

[17] Griffin G.J., Chemistry and Technology of Biodegradable Polymers. Blackie Academic and Professional (1994).

[18] Holmes, P., Applications of PHB a microbially prod-uced biodegradable thermoplastic, Phys. Technol., 16(1): 32-      (1985).

[19] Vadlja, D., Koller, M., Novak, M., Braunegg, G., Horvat, P., Footprint area analysis of binary imaged Cupriavidus necator cells to study PHB production at balanced, transient, and limited growth conditions in a cascade process. Appl. Microbiol. Biotechnol., 100(23): 10065-10080 (2016).

[20] Mergeay, M., Houba, C., Gerits, J., Extrachromosomal inheritance controlling resistance to cadmium, cobalt, copper and zinc ions: evidence from curing in a Pseudomonas. Arch. Int. Phys. Biochim. 86 (2): 440-442 (1978).

[21] Ohi, K.,  Takada, N.,  Komemushi, S., Okazaki, M., Miura, M., A new species of hydrogen-utilizing bacter-ium. J. Gen. Appl. Microbiol., 25(1): 53-58 (1979).

[22] Schwien, U., Schmidt, E., Improved degradation of monochlorophenols by a constructed strain. Appl. Envi-ron. Microbiol., 44(1): 33-39 (1982).

[23] Liebergesell, M., Hustede, E., Timm, A., Steinbuchel, A., Fuller, R.C., Lenz, R.W., Formation of poly (3-hydroxyalkanoates) by phototrophic and chemolitho-trophic bacteria. Arch. Microbiol., 155(5): 415-421 (1991).

[24] Zinn, M., Witholt, B., Egli, T., Occurrence, synthesis and medical application of bacterial polyhydroxyalkan-oate. Adv. Drug Deliv. Rev., 53(1): 5-21 (2001).

[25] Meischel, M., Eichler J., Martinelli, E., Karr, U., Weigel, J., Schmoller, G., Tschegg, E.K., Fischerauer, S., Weinberg, A.M., Stanzl-Tschegg, S.E., Adhesive strength of bone-implant interfaces and in-vivo degrad-ation of PHB composites for load-bearing applications. J. Mech. Behav. Biomed. Mater., 53: 104-118 (2016).

[26] Koller, M., Poly(hydroxyalkanoates) for food packag-ing: application and attempts towards implem-entation. Appl. Food Biotechnol., 1(1): 3-15 (2014).

[27] Gogolewski, S., Jovanovic, M., Perren, S.M., Dillon, J.G., Hughes, M.K., Tissue response and in vivo degrad-ation of selected polyhydroxyacids: polylactides (PLA), poly (3-hydroxybutyrate) (PHB), and poly(3-hydroxy-butyrate-co-3-hydroxyvalerate) (PHB/VA). J. Biomed. Mater. Res. A, 27(9): 1135-1148 (1993).

[28] Lemoigne, M., Etudes sur l'autolyse microbienne-Acidification par formation d'acide β-oxybutyrique. Ann. Inst. Pasteur (Paris), 39: 144-173 (1925).

[29] Jüttner, R. R., Lafferty, R., Knackmuss, H. J., A simple method for the determination of poly-β-hydroxybutyric acid in microbial biomass. Appl. Microbiol. Biotech-nol., 1(3): 233-237 (1975).

[31] Braunegg, G., Lefebvre, G., Genser, K.F., Polyhydr-oxyalkanoates, biopolyesters from renewable resources: Physiological and engineering aspects. J. Biotechnol., 65(2): 127-161 (1998).

[32] Suzuki, T., Yamane, T., Shimizu, S., Mass production of poly-β-hydroxybutyric acid by fed-batch culture with controlled carbon/nitrogen feeding. Appl. Microbiol. Biotechnol., 24(5): 370-374 (1986).

[33] Doi, Y., Kunioka, M.,  Nakamura, Y., Soga, K., Nuclear magnetic resonance studies on unusual bacter-ial copolyesters of 3-hydroxybutyrate and 4-hydr-oxybutyrate. Macromol., 21(9): 2722-2727 (1988).

[34] Khosravi-Darani, K., Farahani, E.V., Shojaosadati, S.A., Application of the Plackett-Burman statistical design to optimize poly(hydroxybutyrate) production by Ralston-ia eutropha in batch culture. Iran. J. Biotechnol., 1(3): 155-161 (2003).

[35] Tabandeh, F., Vasheghani-Farahani, E., Biosynthesis of poly -β- hydroxybutyrate as a biodegradable polymer. Iran. Polym. J., 12(1): 37-42 (2003).

[36] Vasheghani-Farahani, E., Khosravi-Darani, K., Shoja-osadati, S.A., Application of the Taguchi design for production of poly(hydroxybutyrate) by Ralstonia eutr-opha. Iran. J. Chem. Chem. Eng., 23(1): 131-136 (2004).

[37] Hejazi, P., Vasheghani‐Farahani, E., Yamini, Y., Supercritical fluid disruption of Ralstonia eutropha for poly (hydroxybutyrate) recovery. Biotechnol. Prog., 19(5): 1519-1523 (2003).

[38] Shahhosseini, S., Sadeghi, M.T.  Khosravi-Darani, K., Simulation and model validation of batch PHB production process using Ralstonia eutropha. Iran. J. Chem. Chem. Eng., 22(2): 35-42 (2003).

[39] Novak, M., Koller, M., Braunegg, G., Horvat, P., Mathematical modelling as a tool for optimized PHA production. Chem. Biochem. Eng. Q., 29(2): 183-220 (2015).

[40] Poirier, Y., Nawrath, C., Somerville, C., Production of polyhydroxyalkanoates, a family of biodegradable plas-tics and elastomers, in bacteria and plants. Nature Biotechnol., 13(2): 142-150 (1995).

[41] Tavares, L.Z., Da Silva, E.S., da Cruz Pradella, J.G., Production of poly(3-hydroxybutyrate) in an airlift bio-reactor by Ralstonia eutropha. Biochem. Eng. J., 2004. 18(1): 21-31.

[42] Kantarci, N., Borak, F., Ulgen, K.O., Bubble column reactors. Process Biochem., 40(7): 2263-2283 (2005).

[43] Bhole, M., Joshi, J. Ramkrishna, D., CFD simulation of bubble columns incorporating population balance modeling. Chem. Eng. Sci., 63(8): 2267-2282 (2008).

[44] Prakash, A., Margaritis, A., Li, H., Bergougnou, M.A., Hydrodynamics and local heat transfer measurements in a bubble column with suspension of yeast. Biochem. Eng. J., 9(2): p. 155-163 (2001).

[45] Shah, Y., Design parameters estimations for bubble column reactors. AIChE J., 28(3): 353-379 (1982).

[46] Veera, U.P., Kataria, K., Joshi, J., Effect of superficial gas velocity on gas hold-up profiles in foaming liquids in bubble column reactors. Chem. Eng. J., 99(1): 53-58 (2004).

[47] Tang, C., Heindel, T.J., Time-dependent gas holdup variation in an air–water bubble column. Chem. Eng. Sci., 59(3): 623-632 (2004).

[48] Wang, S.,  Arimatsu Y., Koumatsu K., Furumoto K., Yoshimoto, M., Fukunaga, K., Nakao, K., Gas holdup, liquid circulating velocity and mass transfer properties in a mini-scale external loop airlift bubble column. Chem. Eng. Sci., 58(15): 3353-3360 (2003).

[49] Forret, A., Schweitzer, J.M., Gauthier, T., Krishna, R., Schweich, D., Influence of scale on the hydrodynamics of bubble column reactors: an experimental study in columns of 0.1, 0.4 and 1m diameters. Chem. Eng. Sci., 58(3): 719-724 (2003).

[50] Anabtawi M., Abu-Eishah S.I., Hilal N.,Nabhanc M.B.W., Hydrodynamic studies in both bi-dimensional and three-dimensional bubble columns with a single sparger. Chem. Eng. Proc. 42(5): 403-408 (2003).

[52] Shimizu, K., Takada S., Minekawa. K., Kawase Y., Phenomenological model for bubble column reactors: prediction of gas hold-ups and volumetric mass transfer coefficients. Chemical Eng. J., 78(1): 21-28 (2000).

[53] Luo, X., Lee D. J., Lau R., Yang G.,  Fan L.S., Maximum stable bubble size and gas holdup in high‐pressure slurry bubble columns. AIChE J., 45(4): 665-680 (1999).

[55] Essadki, H., Nikov, I., Delmas, H., Electrochemical probe for bubble size prediction in a bubble column. Exper. Therm. Fluid Sci., 14(3): 243-250 (1997).

[56] Schafer, R., Merten, C., Eigenberger, G., Bubble size distributions in a bubble column reactor under industrial conditions. Exper. Therm. Fluid Sci., 26(6): 595-604 (2002).

[57] Lapin, A., Paaschen T., Junghans K.,Lubbert A., Bubble column fluid dynamics, flow structures in slender columns with large-diameter ring-spargers. Chem. Eng. Sci., 57(8): 1419-1424 (2002).

[58] Buwa, V.V., Ranade, V.V., Dynamics of gas–liquid flow in a rectangular bubble column: experiments and single/multi-group CFD simulations. Chem. Eng. Sci., 57(22): 4715-4736 (2002).

[59] Ruzicka, M., Zahradnıik, J., Drahos, J., Thomas, N.H., Homogeneous–heterogeneous regime transition in bubble columns. Chem. Eng. Sci., 56(15): 4609-4626 (2001).

[61] Thorat, B, Joshi, J., Regime transition in bubble columns: experimental and predictions. Exper. Therm. Fluid Sci., 28(5): 423-430 (2004).

[62] Dhotre, M., Ekambara, K. Joshi, J., CFD simulation of sparger design and height to diameter ratio on gas hold-up profiles in bubble column reactors. Exper. Therm. Fluid Sci., 28(5): 407-421 (2004).

[63] Michele, V., Hempel, D.C., Liquid flow and phase holdup—measurement and CFD modeling for two-and three-phase bubble columns. Chem. Eng. Sci., 57(11): 1899-1908 (2002).

[64] Li, H., Prakash, A., Analysis of flow patterns in bubble and slurry bubble columns based on local heat transfer measurements. Chem. Eng. J., 86(3):  269-276 (2002).

[65] Li, H., Prakash, A., Survey of heat transfer mechanisms in a slurry bubble column.Canad. J. Chem. Eng., 79(5): 717-725 (2001).

[66] Degaleesan, S., Dudukovic, M., Pan, Y., Experimental study of gas‐induced liquid‐flow structures in bubble columns, AIChE J., 47(9): 1913-1931 (2001).

[67] Verma, A., Rai, S., Studies on surface to bulk ionic mass transfer in bubble column. Chem. Eng. J., 94(1): 67-72 (2003).

[68] Chen, W., Hasegawa T.,Tsutsumi A., Otawara K., Shigaki Y., Generalized dynamic modeling of local heat transfer in bubble columns. Chem. Eng. J., 96(1): 37-44 (2003).

[69] Cho, Y.J., Woo K.J., Kang, Y., Kim S.D., Dynamic characteristics of heat transfer coefficient in pressurized bubble columns with viscous liquid medium. Chem. Eng. Proc., 41(8): 699-706 (2002).

[70] Behkish, A., Men, Z., Inga, J.R., Morsi, B.I., Mass transfer characteristics in a large-scale slurry bubble column reactor with organic liquid mixtures. Chem. Eng. Sci., 57(16): 3307-3324 (2002).

 [71] Lin, T.J., Wang, S. P., Effects of macroscopic hydrodynamics on heat transfer in bubble columns. Chem. Eng. Sci., 56(3): 1143-1149 (2001).

[72] Vandu, C., Krishna, R., Volumetric mass transfer coefficients in slurry bubble columns operating in the churn-turbulent flow regime. Chem. Eng. Proc., 43(8): 987-995 (2004).

[73] Maalej, S., Benadda, B., Otterbein, M., Interfacial area and volumetric mass transfer coefficient in a bubble reactor at elevated pressures. Chem. Eng. Sci., 58(11): 2365-2376 (2003).

[74] Krishna, R., Van Baten, J., Mass transfer in bubble columns. Catal. Today, 79: 67-75 (2003).

[75] Lefebvre, S., Guy, C., Characterization of bubble column hydrodynamics with local measurements. Chem. Eng. Sci., 54(21): 4895-4902 (1999).

[76] Pino, L., Solari R.B.,  Estevez, A.,  Yepez, M. M. ,  Saez, A. E., Effect of operating conditions on gas hold-up in slurry bubble columns with a foaming liquid. Chem. Eng. Commun., 117(1): 367-382 (1992).

[77] Arcuri, E., Slaff, G., Greasham, R., Continuous production of thienamycin in immobilized cell systems. Biotechnol. Bioeng., 28(6): 842-849 (1986).

[78] Federici, F., Petruccioli, M., Miller, M.W., Enhancement and stabilization of the production of glucoamylase by immobilized cells of Aureobasidium pullulans in a fluidized-bed reactor. Appl. Microbiol. Biotechnol., 33(4): 407-409 (1990).

[80] Rodrigues, M., Vilaça PR, Garbuio A., Takagi M., Barbosa S. Jr., Leo P., Laignier N.S., Silva A.A.P., Moro A. M., Glucose uptake rate as a tool to estimate hybridoma, growth in a packed bed bioreactor, Bioproc. Biosys. Eng., 21(6): 543-546 (1999).

[81] Bordonaro, J.L., Curtis, W.R. Inhibitory role of root hairs on transport within root culture bioreactors. Biotechnol. Bioeng., 70(2): 176-186 (2000).

[82] Son, S., Choi S. M., Lee, Y. H., Choi, B., Yun R., Kim J. K., Large-scale growth and taxane production in cell cultures of Taxus cuspidata (Japanese yew) using a novel bioreactor. Plant. Cell Rep., 19(6): 628-633 (2000).

[83] Chang, I.S., Hong Kim, B., Lovitt, R.W., SeoungBang, J., Effect of CO partial pressure on cell-recycled continuous CO fermentation by Eubacterium limosum KIST612. Process Biochem., 37(4): 411-421 (2001).

[84] Shiao, T.l., Ellis, M.H., Dolferus, R., Dennis, E.S., Doran, P.M., Overexpression of alcohol dehydrogenase or pyruvate decarboxylase improves growth of hairy roots at reduced oxygen concentrations. Biotechnol. Bioeng., 77(4): 455-461 (2002).

[85] Ogbonna, J.C., Mashima, H., Tanaka, H., Scale up of fuel ethanol production from sugar beet juice using loofa sponge immobilized bioreactor. Bioresour. Technol., 76(1): 1-8 (2001).

[86] Khanna, S., Srivastara, A. K., Statistical media optim-ization studies for growth and PHB production by Ralstonia eutropha. Process Biochem., 40(6): 2173-2182 (2005).

[87] Mulchandani, A., Luong, J., Groom, C., Substrate inhibition kinetics for microbial growth and synthesis of poly-β-hydroxybutyric acid by Alcaligenes eutrophus ATCC 17697. Appl. Microbiol. Biotechnol., 30(1): 11-17 (1989).

[88] Pedros-Alio, C., Mas, J., Guerrero, R., The influence of poly-β-hydroxybutyrate accumulation on cell volume and buoyant density in Alcaligenes eutrophus. Arch. Microbiol., 143(2): 178-184 (1985).

[89] Linko, S., Vaheri, H., Seppala, J., Production of poly-β-hydroxybutyrate on lactic acid by Alcaligenes eutrophus H16 in a 3-l bioreactor. Enzy. Microb. Technol., 15(5): 401-406 (1993).

[90] Ramsay, J.A., Hassan, M. C. A., Ramsay, B. A., Hemicellulose as a potential substrate for production of poly(b-hydroxyalkanoates), Canad. J. Microbiol., 41(13): 262-266 (1995).

[91] Young, F.K., Kastner, J.R., May, S.W., Microbial production of poly-β-hydroxybutyric acid from D-xylose and lactose by Pseudomonas cepacia. Appl. Environ. Microbiol., 60(11): 4195-4198 (1994).

[92] Kim, B.S., Production of poly (3-hydroxybutyrate) from inexpensive substrates. Enzy. Microb. Technol, 27(10): 774-777 (2000).

[94] Yazdian, F., PesaranHajiabbas, M.,Shojaosadati, S.A., Nosrati, E., Vasheghani-Farahani, M., Mehrnia, M.R., Study of hydrodynamics, mass transfer, energy cons-umption, and biomass production from natural gas in a forced-liquid vertical tubular loop bioreactor. Biochem. Eng. J., 49(2): p. 192-200 (2010).

[96] Blenke, H., Loop reactors., Adv. Biochem. Eng., 13. p. 121-214 (1979).

[97] Eriksen, H., Strand, K., Jørgensen, L., Method Ferment. Google Patents (2009).

[98] Mokhtari-Hosseini, Z.B., Vasheghani-Farahania, E., Heidarzadeh-Vazifekhoran, A., Shojaosadati S., Karim-zadeh, R., Khosravi-Darani, K., Statistical media optim-ization for growth and PHB production from methanol by a methylotrophic bacterium. Bioresour. Technol., 100(8): p. 2436-2443 (2009).

[99] Zuniga, C., Morales M, Le Borgne S, Revah S., Production of poly-β-hydroxybutyrate (PHB) by Methy-lobacterium organophilum isolated from a methanotro-phic consortium in a two-phase partition bioreactor. J. Hazard. Mater., 190(1): p. 876-882 (2011).

[100] Mousavi, S., Jafari A., Chegini S.,Turunen I., CFD simulation of mass transfer and flow behaviour around a single particle in bioleaching process. Process Bio-chem., 44(7): p. 696-703 (2009).

[101] Mousavi, S., Shojaosadati, S.A., Golestani, J., Yazdian, F., CFD simulation and optimization of effective parameters for biomass production in a horizontal tubular loop bioreactor. Chem. Eng. Proc, 49(12): p. 1249-1258 (2010).

[102] Roy, S., Joshi, J., CFD study of mixing chara-cteristics of bubble column and external loop airlift reactor. AsiaPac. J. Chem. Eng., 3(2): p. 97-105 (2008).

[103] Wang, Y., Brannock, M., Leslie, G., Membrane bioreactors: overview of the effects of module geo-metry on mixing energy. AsiaPac. J. Chem. Eng., 4(3): p. 322-333 (2009).

[104] Amini, E., Mehrnia M.R., Mousavi S.M., Mostoufi N., Experimental study and computational fluid dynam-ics simulation of a full-scale membrane bioreactor for municipal wastewater treatment application. Ind. Eng. Chem. Res., 52(29): p. 9930-9939 (2013).

[105] Mavaddat, P., Mousavi, S.M., Aminim E., Azargoshasb, H., Shojaosadati, S.A., Modeling and CFD‐PBE simulation of an airlift bioreactor for PHB production. AsiaPac. J. Chem. Eng., 9(4): p. 562-573 (2014).

[106] Huang, Q., Yang, C., Yu, G., Mao, Z.S., CFD simula-tion of hydrodynamics and mass transfer in an internal airlift loop reactor using a steady two-fluid model. Chem. Eng. Sci., 65(20): p. 5527-5536 (2010).

[107] Luo, H. P., Al-Dahhan, M.H., Local gas holdup in a draft tube airlift bioreactor. Chem. Eng. Sci., 65(15): p. 4503-4510 (2010).

[108] Bannari, R., Bannari A., Selma B., Proulx P., Mass transfer and shear in an airlift bioreactor: Using a math-ematical model to improve reactor design and perfor-mance, Chem. Eng. Sci., 66(10): p. 2057-2067 (2011).

[109] Luo, H.-P., Al-Dahhan, M.H., Verification and validation of CFD simulations for local flow dynamics in a draft tube airlift bioreactor. Chem. Eng. Sci., 66(5): p. 907-923 (2011).

[110] Simcik, M., Mota, A., Ruzicka, M.C., Vicente, A., Teixeira, J., CFD simulation and experimental measur-ement of gas holdup and liquid interstitial velocity in internal loop airlift reactor. Chem. Eng. Sci. 66(14): p. 3268-3279 (2011).

[111] Mousavi, S., Jafari, A., Yaghmaei, S., Vossoughi, M., Turunen, I., Experiments and CFD simulation of ferrous biooxidation in a bubble column bioreactor. Comp. Chem. Eng., 32(8): p. 1681-1688 (2008).

[113] Xu, L., Xu, L., Liu R., Wang, F., Liu C.Z., Develop-ment of a draft-tube airlift bioreactor for Botryococcus braunii with an optimized inner structure using comput-ational fluid dynamics. Biores. Technol., 119: p. 300-305 (2012).

[114] Liu, R., Liu, Y., Liu, C.Z., Development of an efficient CFD-simulation method to optimize the structure parameters of an airlift sonobioreactor. Chem. Eng. Res. Design., 91(2): p. 211-220 

(2013).

[116] Leaf, T. A., Srienc, F., Metabolic modeling of poly-hydroxybutyrate biosynthesis. Biotechnol. Bioeng., 57(5): p. 557-570 (1998).

[117] Khosravi-Darani, K., Mokhtari, Z.B., Amai, T., Tanaka, K., Microbial production of poly(hydroxy-butyrate) from C1 carbon sources. Appl. Microbiol. Biotechnol., 97(4): p. 1407-1424 (2013).

[118] Bourque, D., Pomerleau, Y., Groleau, D., High-cell-density production of poly-β-hydroxybutyrate (PHB) from methanol by Methylobacterium extorquens: pro-duction of high-molecular-mass PHB. Appl. Micro-biol. Biotechnol., 44(3-4): p. 367-376 (1995).

[119] Horvat, P., Vrana Špoljarić, I., Lopar, M., Atlić, A., Koller, M., Braunegg, G., Mathematical modelling and process optimization of a continuous 5-stage bioreactor cascade for production of poly[-(R)-3-hydroxybutyrate] by Cupriavidus necator. Bioproc. Biosys. Eng. 36(9): p. 1235-1250 (2013).

[120] Atlić, A., Koller, M., Scherzer, D., Kutschera, C., Grillo-Fernandes, E., Horvat, P., Chiellini, E., Braun-egg, G., Continuous production of poly([R]-3-hydroxy-butyrate) by Cupriavidus necator in a multi-stage bioreactor cascade.Appl. Microbiol. Biotechnol., 91(2): p. 295-304 (2011).

[121] Luedeking, R., Piret, E.L., A kinetic study of the lactic acid fermentation. Batch process at controlled pH. Biotechnol. Bioeng., 1959. 1(4): p. 393-412.

[122] Megee, I. R., Drake J. F., Fredrickson A. G., Tsuchiya, H. M., Studies in intermicrobial symbiosis. Saccharomyces cerevisiae and Lactobacillus casei. Canad. J. Microbiol., 18(11): p. 1733-1742 (1972).

[123] Mankad T., Bungay H., Model for Microbial Growth with More than One Limiting Nutrient, J. Biotechnol., 7(2): p. 161-166 (1988).

[124] Koller, M., Horvat, P., Hesse, P., Bona, R., Kutschera, C., Atlić, A., Braunegg, G., Assessment of formal and low structured kinetic modeling of polyhyd-roxyalkanoate synthesis from complex substrates. Bioproc. Biosys. Eng., 29(5-6): p. 367-377 (2006).

[125] Shahhoseini, S., Jamalzadeh, E., Modeling and simulation of polyhydroxybutyrate production by Pro-tomonas extorquens in fed-batch culture. Iran. J. Biotechnol. 4(2) 21-24 (2006).

[126] Suzuki, T., Yamane, T., Shimizu, S., Mass produc-tion of poly-hydroxybutyric acid by fully automatic fed-batch culture of methylotroph. Appl. Microbiol. Biotec-hnol., 23(5): p. 322-329(1986).

[127] Chien, C.C., Chen, C.C., Choi, M.H., Kung, S.S., Wei, Y.H., Production of poly-beta-hydroxybutyrate (PHB) by Vibrio spp. isolated from marine environ-ment. J. Biotechnol., 132(3): p. 259-263 (2007).

[128] Mozumder, M.S.I., Garcia-Gonzalez, L., DeWever, H., Volcke, E.I.P., Poly(3-hydroxybutyrate) (PHB) production from CO2: Model development and process optimization. Biochem. Eng. J., 98: p. 107-116 (2015).

[129] Kim, S.W., Lee, H.S., Kim, J.H., High production of Poly-hydroxybutyrate (PHB) from Methylobacter-ium organophilum under potassium limitation. Biotechnol. Lett., 18(1): p. 25-30 (1996).

[130] Mokhtari‐Hosseini, Z.B., Vasheghani‐Farahani E.,  Shojaosadati, S.A., Karimzadeh, R., Heidarzadeh‐Vazi-fekhoran, A. Effect of feed composition on PHB production from methanol by HCDC of Methylobacter-ium extorquens (DSMZ 1340). J. Chem. Technol. Biotechnol., 84(8): p. 1136-1139 (2009).

[132] Zhang Z.Y., Wang Y., Wu L., Fauman E.B., Stuckey J.A., Schubert H.L., Saper M.A., Dixon J.E., The cys(x) 5arg Catalytic Motif in Phosphoester hydrolysis, Biochem., 33(51): p.15266-15270 (1994).

[134] Russell L.A., James D., Goltz L., Bourque B., Preparedness and Hazard Mitigation Actions Before and After Two Earthquakes, Env. Behav., 27(6): 744-770 (1995).

[135] Takeda M., Matsuoka H., Hamana H., Hikuma M., Biosynthesis of Poly-3-hydroxybutyrate by Sphaeroti-lus natans, Appl. Microbiol. Biotechnol. 43(1): 31-34 (1995).