Ce-ZSM-11 Zeolite: An Efficient Heterogeneous Catalyst for One-Pot Synthesis of 4H-Pyran Derivatives

Document Type: Research Article

Authors

Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad (M.S.), 431004, INDIA

Abstract

ZSM-11 zeolite was synthesized by hydrothermal treatment and cerium ion was incorporated by the ion exchange method.  The catalytic activity of cerium modified ZSM-11 zeolite was tested for the one-pot synthesis of 4H-pyran derivatives by cyclocondensation of aromatic aldehyde, malononitrile, and ethyl acetoacetate. The synthesized catalyst was characterized by Powder-X Ray Diffraction, Scanning Electron Microscopy, Energy Dispersive Spectroscopy, Fourier Transform Infrared Spectroscopy, Brunauer-Emmer-Teller surface area analysis and Temperature programmed desorption (ammonia) analysis. The present method offers significant advantages over the reported methods like easy separation of catalyst, simple work-up procedure, an excellent yield of desired products, and reusability of catalyst without significant loose in the activity.

Keywords

Main Subjects


[1] Elnagdi M.H., Elfahham H.A., Elgemeie G.E.H., Utility of α, β-Unsaturated Nitriles in Heterocyclic Synthesis, Heterocycles., 20(3): 519-550 (1983).
[2] Goldmann S., Stoltefuss J., 1, 4-dihydropyridine: Effect of Chirality and Conformation on the Calcium Antagonist and Calcium Agonist Activities, Angew. Chem. Int. Ed. Engl., 30 (12):1559-1578 (1991).
[3] Wu J.Y.C., Fong W.F., Zhang J.X., Leung C. H., Kwong H.L., Yang M.S., Li D., Cheung H.Y., Reversal of Multidrug Resistance in Cancer Cell by Pyranocoumarins Isolated from Redix Peucedani, Eur. J. Pharmacol., 473(1):9-17 (2003).
[4] Bonsignore L., Loy G., Secci D., Calignano A., Synthesis and Pharmacological Activity of 2-oxo-(2H) 1-benzopyran-3-carboxamide Derivative, Eur. J. Med. Chem., 28(6): 517-520 (1993).
[5] Perrella F.W., Chen S.F., Behrens D.L., Kaltenbach R.F., Seitz S.P., Phospholipase C Inhibitors: A New Class of Agents, J. Med. Chem., 37 (14): 2232-2237 (1994).
[6] Babu N.S., Pasha N., Venkateswara K.T., Sai Prasad P.S., Lingaiah N., A Heterogeneous Strong Basic Mg/La Mixed Oxide Catalyst for Efficient Synthesis of Polyfunctionalized Pyran, Tetrahedron Lett., 49(17): 2730-2733 (2008).
[7] Arnesto D., Horspool W. M., Martin N., Ramos A., Seaone C., Synthesis of Cyclobutenes by the Novel Photochemical Ring Contraction of 4-Substituted 2-amino-3,5-dicyano-6-phenyl-4H-pyran, J. Org. Chem., 54 (13):3069-3072 (1989).
[11] Safaei-Ghomi J., Teymuri R., Shahbazi-Alavi H., Ziarati A., SnCl2/Nano SiO2: A Green and Reusable Heterogeneous Catalyst for the Synthesis of Polyfunctionalized 4H-Pyran, Chin. Chem. Lett., 24(10): 921-925 (2013).
[12] Heravi M.M., Beheshtiha Y. S., Pirnia Z., Sadjadi S., Adibi M., One-Pot, Three Component Synthesis of 4H-Pyran Using Cu(II) Oxymetasilicate, Synthetic Commu., 39 (20):3663-3667 (2009).
[13] Aswin K., Mansoor S.S., Logaiya K., Sudhan S.P.N., Malik V.S., Ramadoss H., Reusable Silica Bonded S-Sulfonic Acid Catalyst for Three Component Synthesis of 2-amino-5oxo-5,6,7,8-tetrahydro-4H-Chromene and 2-amino-H-pyrans in Aqueous Ethanol, Res. Chem. Intermed., 40(8): 2583-2598 (2014).
[14] Wagh Y.B., Tayade Y. A., Padvi S. A., Patil B. S., Patil N. B., Dalal D. S., A Cesium Fluoride Promoted Efficient and Rapid Multicomponent Synthesis of Functionalized 2-amino-3-cyano-4H-Pyran and Spirooxindole Derivative, Chin. Chem. Lett., 26 (10):1273-1277 (2015).
[15] Nope E., Martinez J. J., Rojas H. A., Sathicq A. G., Romanelli G. P., Synthesis of Mesoporous Ca-MCM Catalyst and Their use in Suitable Multicomponent Synthesis of Polyfunctionalized Pyrans, Res. Chem. Intermed., 43(4): 2103-2118 (2017).
[16] Safaei-Ghomi J., Shahbazi-Alavi H., Teymuri R., Nano ZrP2O7 Catalyzed Multicomponent Reaction for an easy access of 4H-pyan and 1, 4 Dihydropyridines, Polycycl. Aromat. Comp., 36(5):834-847 (2016).
[17] Rana V., Kanagaraj K., Pitchamani K., A Multicomponent, Solvent Free, One Pot Synthesis of Benzoxanthenones Catalyzed by HY Zeolite: Their Antimicrobial cell Imaging Studies, Tetrahedron Lett., 53 (9):1018-1024 (2012).
[18] Yu Q., Chen J., Zhang Q., Li C., Cui Q., Micron ZSM-11 Microsphere Seed-Assisted Synthesis of Hierarchical Submicron ZSM-11 with Intergrowth Morphology, Mater. Lett., 120: 97-100 (2014).
[20] Bleken F., Skistad W., Barbera K., Kustova M., Bordiga S., Beato P., Lillerud K. P., Svelle S., Olsbye U., Conversion of Methanol over 10-Ring Zeolite with Differing Volume at Channel Intersection: Comparison of TNU-9, IM-5, ZSM-11 and ZSM-5Phys. Chem. Chem. Phys., 13: 2539-2549 (2011).
[21] Zhang L., Liu H. J., Li X. J., Xie S. J., Wang Y. Z., Xin W. J., Liu S. L., Xu L. Y., Difference between ZSM-5 and ZSM-11 Zeolite Catalyst in 1-hexene Aromatization and Isomerization, Fuel Process. Technol., 91 (5): 449-455 (2010).
[22] Bortnovsky O., Sazama P., Wichterlova B., Cracking of Pentenes to C2-C4 Light Olefins over Zeolites and Zeotypes: Role of Topology and Acid Site Strength and Concentration, Appl. Catal. A., 287 (2):203-213 (2005).
[23] Meng X., Huang H., Zhang Q., Zhang M., Li C., Cui Q., Conversion of Methanol into Light Olefins over ZSM-11 Catalyst in a Circulating Fluidized-Bed Unit, Korean J. Chem. Eng., 33 (3): 831-837 (2016).
[24] Gomez S., Lerici L., Saux C., Perez A. L., Brondino C.D., Pierella L., Pizzio L., Fe/ZSM-11 as a Novel and Efficient Photo Catalyst to Degrade Dichlorvos on Water Solution, Appl. Catal. B Environ., 202: 580-586 (2017).
[25] Xie P., Ma Z., Zhou H., Huang C., Yue Y., She W., Xu H., Hua W., Gao Z., Catalytic Decomposition of  N2O over Cu-ZSM-11 Catalyst, Microporous Mesoporous Mater., 191: 112-117 (2014).
[26] Anunziata O. A., Mercado G. V. G., Pierella L. B., Catalytic Activation of Methane Using n-Pentane as co-Reactant over Zn/H-ZSM-11 Zeolite, Catalysis Lett., 87 (3): 167-171 (2003).
[28] Lerici L. C., Renzini M. S., Sedran U., Pierella L. B., Tertiary Recycling of Low-Density Polyethylene by Catalytic Cracking over ZSM-11 and BETA Zeolites Modified with Zn2+: Stability Study, Energy Fuels., 27(4):2202-2208 (2013).
[29] Magar R.R., Pawar G.T., Arbad B. R., Lande M. K., Fe-MCM-22: An Efficient Heterogeneous Catalyst for one Pot Four Component Synthesis of 1H-Pyrazolo [1, 2-b] Phthalazine-5, 10-Dione Derivatives, Adv. Org. Chem. Lett., 3(1):8-14 (2016).
[30] Magar R.R., Pawar G.T., Gadekar S.P., Lande M.K., Fe-MCM-22 Catalyzed Multicomponent Synthesis of dihydropyrano[2,3-c] Pyrazole DerivativesIran. J. Catal., 7(1): 1-9 (2017).
[31] Treacy M.M.J., Higgins J.B., Collection of Simulated XRD Powder Patterns for Zeolite, New York, NY:Elsevier. (2001).
[32] Yu Q., Cui C., Zhang Q., Chen J., Li Y., Sun J., Li C., Cui Q., Yang C., Shan H., Hierarchical ZSM-11 with Intergrowth Structure: Synthesis, Characterization and Catalytic Properties, J. Energy Chem., 22: 761-768 (2013).
[33] Khemaissia S., Nibou D., Amokrane S., Lebaili N., Elaboration and Characterization of High Silica ZSM-5 and Mordenite Solid Microporous Materials, Journal of Applied Sciences., 7: 720-723 (2007).
[34] Zecchina A., Bordiga S., Spoto G., Scarano D., Petrini G., Leofanti G., Padovan M., Otero Arean C., Low-Temperature Fourier-Transform Infrared Investigation of the Interaction of CO with Nano Sized ZSM-5 and Silicate, J. Chem. Soc. Faraday Trans. 88: 2959-2969 (1992).