CNTs-COOH Paste Electrode for Detection of Temozolomide

Document Type: Research Article

Authors

1 Guangdong-Hongkong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou, Guangdong, 510632, P.R. CHINA

2 Department of Biomedical Engineering, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, 510632, P.R. CHINA

3 Center for Nanofibers and Nanotechnology, Department of Mechanical Engineering, Faculty of Engineering, National University of Singapore, Singapore, 117576, P.R. CHINA

Abstract

The MWCNTs-COOH Paste Electrode (MCPE) was successfully used to study the electrochemical behavior of temozolomide in 0.2 M H2SO4 solution, phosphate buffer solution (0.1M PBS, pH 7.4) and 0.1M NaOH solution by Cyclic Voltammetry (CV) technique. The results exhibit that MCPE can remarkably enhance sensing and electrocatalytic activity towards the oxidation and reduction of temozolomide in acidic, neutral, and basic solutions. The effect of the scan rate exhibits the adsorption controlling process. The effect of pH range from 2 to 6 was investigated
by cyclic voltammetry technique, from cyclic voltammetry study exhibits the peak current was
pH-dependent with a slope of 68 mV/pH.  The detection limit (LOD)) at MCPE were found to be 0.056 mM,0.069 mM and 0.065 mM in 0.1M H2SO4, 0.1M PBS (pH 7.4)  and 0.1M NaOH solutions  respectively by Cyclic Voltammetric (CV) technique. Similarly, from Linear Scan Voltammetric (LSV) technique, the detection limits (LOD) were found to be 0.050 mM, 0.021mM and 0.036 mM
in acidic, neutral, and basic solution respectively. The proposed method was successfully applied for the determination of temozolomide in the clinical sample.

Keywords

Main Subjects


[1] Stupp R., Mason W.P., van den Bent M.J., Weller M., Fisher B., Taphoorn M.J., Belanger K., Brandes A.A., Marosi C., Bogdahn U., Curschmann J., Janzer R.C., Ludwin S.K., Gorlia T., Allgeier A., Lacombe D., Cairncross J.G., Eisenhauer E., Mirimanoff R.O., Radiotherapy plus Concomitant and Adjuvant Temozolomide for Glioblastoma, N. Engl. J. Med., 352: 987-996 (2005).

[3] Denny B.J., Wheelhouse R.T., Stevens M.F., Tsang L.L., Slack J.A., NMR and Molecular Modeling Investigation of the Mechanism of Activation of the Antitumor Drug Temozolomide and Its Interaction with DNA, Biochemistry, 33: 9045- 9051(1994).

[4] Friedman H.S., Kerby T., Calvert H., Temozolomide and Treatment of Malignant Glioma, Clin. Cancer Res. 6: 2585–2597 (2000).

[6] Clark A.S., Stevens M.F.G., Sansom C.E., Schwalbe C.H., Anti-Tumour Imidazotetrazines. Part XXI. Mitozolomide and Temozolomide: Probes for the Major Ggroove of DNA, Anti-Cancer Drug Des., 5: 63-68 (1990).

[7] Lopes I.C., Oliveira S.C.B., Oliveira-Brett A.M., In Situ Electrochemical Evaluation of Anticancer Drug Temozolomide and Its Metabolites–DNA Interaction, Anal. Bioanal. Chem. 405: 3783–3790 (2013).

[8] Lopes I.C., de Oliveira S.C.B., Oliveira-Brett A.M., Temozolomide Chemical Degradation to 5-Aminoimidazole-4-Carboxamide – Electrochemical Study, J. Electroanal. Chem., 704: 183-189 (2013).

[9] Britten C.D., Rowinsky E.K., Baker S.D., Agarwala S.S., Eckardt J.R., Barrington R., Diab S.G., Hammond L.A., Johnson T., Villalona-Calero M., Fraass U., Statkevich P., Von Hoff D.D., Eckhardt S.G., A Phase I and Pharmacokinetic Study of Temozolomide and Cisplatin in Patients with Advanced Solid Malignancies, Clin. Cancer Res., 5: 1629–1637 (1999).

[10] Park D.M., Shah D.D., Egorin M.J., Beumer J.H., Disposition of Temozolomide in a Patient with Glioblastoma Multiforme After Gastric Bypass Surgery, J. Neuro-Oncol., 93: 279 –283 (2009).

[11] Hong K., Likhari P., Parker D., Statkevich P., Marco A., Lin C.C., Nomeir A.A., High-Performance Liquid Chromatographic Analysis and Stability of Anti-Tumor Agent Temozolomide in Human Plasma
J. Pharm. Biomed. Anal., 24:461-468 (2001).

[12] Andrasi M., Bustos R., Gaspar A., Gomez F.A., Klekner A., Analysis and Stability Study of Temozolomide Using Capillary Electrophoresis, J. Chromatogr. B, 878: 1801-1808 (2010).

[14] Andrási M., Törzsök B., Klekner A., Gáspár A., Determination of Temozolomide in Serum and Brain Tumor with Micellar Electrokinetic Capillary Chromatography, J. Chromatogr. B, 879: 2229-2233 (2011).

[15] Shen F., Decosterd L.A., Gander  M., Leyvraz S., Biollax J., Lejeune F., Determination of Temozolomide in Human Plasma and Urine by High-Performance Liquid Chromatography After Solid-Phase Extraction, J. Chromatogr. B Biomed. Appl., 667: 291-300 (1995).

[16] Chowdhury S.K., Laudicina D., Blumenkrantz N., Wirth M., Alton K.B., An LC/MS/MS Method for the Quantitation of MTIC (5-(3-N-methyltriazen-1-yl)-imidazole-4-carboxamide), a Bioconversion Product of Temozolomide, in Rat and Dog Plasma, J. Pharm. Biomed. Anal., 19: 659-668 (1999).

[18] Reddy S., Swamy B. E. K., Jayadevappa H., CuO Nanoparticle Sensor for the Electrochemical Determination of Dopamine, Electrochim. Acta, 61: 78-86 (2012).

[19] Jacobs C.B., Peairs M.J., Venton J.B., Review: Carbon Nanotube Based Electrochemical Sensors for Biomolecules, Anal. Chim. Acta, 662: 105-127 (2010).

[20] Banks C.E., Crossley A., Salter C., Wilkins S.J., Compton R.G., Carbon Nanotubes Contain, Metal Impurities which are Responsible for the “electrocatalysis” Seen at Some Nanotube-Modified Electrodes, Angew. Chem. Int. Ed., 45: 2533–2537 (2006).

[21] Reddy S., Du R., Xu H., Wu J., Mao N., Zhang J., Carbon Nanotube/gold Nanoparticles Sensor for Detection of Hydrazine in the Pyrogallol red Solution, Anal. Bioanal. Electrochem., 7: 277-290 (2015).

[23] Mattson M.P., Haddon R.C., Rao A.M., Molecular Functionalization of Carbon Nanotubes and Use as Substrates for Neuronal Growth, J. Mol. Neurosci., 14: 175-182 (2000).

[24] Hua M.Y., Chen H.C., Tsai R.Y., Tseng S.J., Hu S.C., Chiang CD, Chang PJ, Preparation of Polybenzimidazole- Carboxylated Multiwalled Carbon Nanotube Composite for Intrinsic Sensing of Hydrogen Peroxide, J. Phys Chem. C, 115: 15182-15190 (2011).

[25] DSouza O.J., Mascarenhas R.J.,  Satpati A.K.,  Aiman L. V., Mekhalif Z., Electrocatalytic Oxidation of L-Tyrosine at Carboxylic Acid Functionalized Multi-Walled Carbon Nanotubes Modified Carbon Paste Electrode, Ionics, (2015) DOI 10.1007/s11581-015-1552-6.

[26] Bard A.J., Faulkner L.R., Electrochemical Methods: Fundamental and Application, (Wiley, New York), (2000).

[27] Gosser Jr. D.K., Cyclic Voltammetry Simulation and Analysis of Reaction Mechanisms, (VCH, Weinheim), (1993).

[28] Xia C., Ning W., Long W., Lin G., Synthesis of Nanochain-Assembled ZnO Flowers and Their Application to Dopamine Sensing, Sens. Actuat. B., 147: 629-634 (2010).

[29] Zhu Z., Qu L., Guo Y., Zeng Y., Sun W., Huang X., Electrochemical Detection of Dopamine on a Ni/Al Layered Double Hydroxide Modified Carbon Ionic Liquid Electrode, Sens. Actuators, B, 151: 146-152 (2010).