Computational Investigation of Structure and Reactivity of Methyl Hydrazinecarbodithioate

Document Type: Research Article

Authors

1 Department of Chemistry, ITM University, Gwalior, INDIA

2 Department of Chemistry, Institute of Information Technology and Management, Gwalior, INDIA

3 Centre for Research for Chemical Sciences, Post Graduate Department of Chemistry, SMS Govt. College, Gwalior, INDIA

Abstract

In this study, we theoretically investigated Methyl hydrazinecarbodithioate by quantum chemical calculations for geometry optimization, vibration frequencies, and electronic structure parameters. The geometry optimization by DFT, ab initio MP2 method and the frequency calculation by DFT method was performed at the highest available Pople style 6-311G++(3df,3pd) basis set level. The semi-empirical calculations were performed by the latest PM7 method. The theoretically obtained results were compared with the experimental data. Conformational behavior, frontier molecular orbitals, molecular electrostatic potential, electron localization function, and non-covalent interaction plots were also analyzed. The study explained the geometry, conformational flexibility and relative stability of different conformers.  

Keywords

Main Subjects


[1] Cheah, Pike-See, King-Hwa Ling, Karen Anne Crouse R. R., Characterization of the S-Benzyldithiocarbazate Effects on Cell Proliferation and Oncogene Expression in Human Breast Cancer Cells, Med. Biol. Sci., 1(2):1–7 (2007).

[4] Manan M.A.F.A., Crouse K.A., Tahir M.I.M., Rosli R., How F.N.-F., Watkin D.J., Slawin A.M.Z., Synthesis, Characterization and Cytotoxic Activity of S-Benzyldithiocarbazate Schiff Bases Derived from 5-Fluoroisatin, 5-Chloroisatin, 5-Bromoisatin and Their Crystal Structures, J. Chem. Crystallogr., 41(11):1630–1641 (2011).

[5] Mughrabi F.F., Hashim H., Ameen M., Khaledi H., Ali H.M., Cytoprotective Effect of Benzyl N'- (indol-3- ylmethylidene )-hydrazinecarbodithioate Against Ethanol-induced Gastric Mucosal Injury in Rats, J. Pure Appl. Chem., 5:34–42 (2011).

[6] Mughrabi F.F., Hashim H., Ameen M., Khaledi H., Ali. H.M., Acceleration of Wound Healing Potential of Benzyl N'-(Indol-3-Ylmethylidene)- Hydrazinecarbodithioate Derivatives in Experimental Rats, Res. J. Appl. Sci., 5(2):131–136 (2010).

[7] Pavan F.R., da S Maia P.I., Leite S.R.A., Deflon V.M., Batista A.A., Sato D.N., Franzblau S.G., Leite C.Q.F., Thiosemicarbazones, Semicarbazones, Dithiocarbazates and Hydrazide/hydrazones: Anti-Mycobacterium Tuberculosis Activity and Cytotoxicity, Eur. J. Med. Chem., 45(5):1898–1905 (2010).

[8] Tarafder M., Kasbollah A., Sarvanana N., Crouse K., Ali A., K T. O., S-methyldithiocarbazate and its Schiff Bases: Evaluation of Bondings and Biological Properties, J. Biochem. Mol. Biol. Biophys., 6(2):85–91 (2002).

[9] Tarafder M.T.H., Saravanan N., Ali A.M., Kasbollah A., Crouse K.A., Yih K.Y., Some Nitrogen Sulfur Compounds: Bondings and Biological Properties, Asia Pac. J. Mol. Biol. Biotechnol., 9(1):38–44 (2001).

[10] Gattegno D., Giuliani A.M., NMR Study of Some Derivatives of Dithiocarbazic Acids, Tetrahedron, 30(5):701–704 (1974).

[11] James J. P. Stewart, MOPAC2012.,2012.

[12] Neese F., The ORCA Program System, Wiley Interdiscip. Rev. Comput. Mol. Sci., 2(1):73–78 (2012).

[13] Hanwell M.D., Curtis D.E., Lonie D.C., Vandermeersch T., Zurek E., Hutchison G.R., Avogadro : an Advanced Semantic Chemical Editor, Visualization, and Analysis Platform, J. of Cheminf., 4:1–17 (2012).

[14] Halgren T.A., Merck Molecular Force Field. I. Basis, form, Scope, Parameterization, and Performance of MMFF94, J. Comput. Chem., 17(5–6): 490–519 (1996).

[15] Allouche A.-R., Gabedit - A Graphical User Interface for Computational Chemistry Softwares, J. Comput. Chem., 32:174–182 (2010).

[16] Dill J. D., Self-Consistent Molecular Orbital Methods. XV. Extended Gaussian-Type Basis Sets for Lithium, Beryllium, and Boron, J. Chem. Phys., 62(7):2921 (1975).

[17] McLean A. D., Chandler G. S., Contracted Gaussian basis Sets for Molecular Calculations. I. Second Row Atoms, Z= 11-18, J. Chem. Phys., 72(10): 5639-5648 (1980).

[18] Francl M.M., Pietro W.J., Hehre W.J., Binkley J.S., Gordon M.S., DeFrees D.J., Pople J.A., Self-Consistent Molecular Orbital Methods. XXIII. A Polarization-Type Basis Set for Second-Row Elements, J. Chem. Phys., 77(7):3654–3665 (1982).

[19] Blaudeau J.-P., McGrath M. P., Curtiss L. A., Radom L., Extension of Gaussian-2 (G2) theory to Molecules Containing Third-Row Atoms K and Ca, J. Chem. Phys., 107(13):5016–5021 (1997).

[20] Krishnan R., Binkley J. S., Seeger R., Pople J. A., Self-Consistent Molecular Orbital Methods. XX. A Basis Set for Correlated Wave Functions, J. Chem. Phys., 72(1):650–654 (1980).

[22] Grimme S., Ehrlich S., Goerigk L., Effect of the Damping Function in Dispersion Corrected Density Functional Theory, J. Comput. Chem., 32(7):1456–1465 (2011).

[23] Manogaran S., Sathyanarayana D. N., Conformational Characterization of S-Methyl Dithiocarbazate by Infrared spectra and Vibrational Assignments, Bull. Chem. Soc. Jpn., 55(8):2628–2632 (Jun. 1982).

[24] Amore-bonapasta A., Battistoni C., Lapiccirella A., Paparazzo E., A Theoretical Study of the Conformational Behaviour of the S-Methyl Ester of Dithiocarbazic Acid, J. Mol. Struct. Theochem., 90(1–2):1–6 (1982).

[25] Lanfredi A. M. M., Tiripicchio A., Camellini M. T., Monaci A., Tarli F., X-Ray and Infrared Structural Studies on the Methyl Ester of Dithiocarbazic Acid and Its N-Substituted Derivatives, J. Chem. Soc., Dalt. Trans., (5):417–422 (1977).

[28] Allen F.H., Bird C.M., Rowland R.S., Raithby P.R., Resonance-Induced Hydrogen Bonding at Sulfur Acceptors in R1R2C=S and R1CS2 Systems, Acta Crystallogr. Sect. B Struct. Sci., 53(4):680–695 (1997).

[29] Contreras-García J., Johnson E. R., Keinan S., Chaudret R., Piquemal J.-P., Beratan D. N., Yang W., NCIPLOT: a Program for Plotting Non-Covalent Interaction Regions, J. Chem. Theory Comput., 7(3):625–632 (2011).

[30] Okulik N., Jubert A. H., Theoretical Analysis of the Reactive Sites of Non-Steroidal Anti-Inflammatory Drugs, Internet Electron. J. Mol. Des, 4:17–30 (2005).

[32] Nikolaienko T. Y., Bulavin L. A., Hovorun D. M., Chemistry C., Nikolaienko T. Y., Bulavin L. A., Hovorun D. M., Chemistry C., JANPA: An Open Source Cross-platform Implementation of the Natural Population Analysis on the Java platform, Comput. Theor. Chem., 1050:15–22 (2014).

[33] Fukui K., Yonezawa T., Shingu H., A Molecular Orbital Theory of Reactivity in Aromatic Hydrocarbons, J. Chem. Phys., 20(4):722–725 (1952).

[34] Mendoza-Huizar L. H., Rios-Reyes C. H., Chemical Reactivity of Atrazine Employing the Fukui Function, J. Mex. Chem. Soc., 55(3):142–147 (2011).

[15] Allouche A.-R., Gabedit - A Graphical User Interface for Computational Chemistry Softwares, J. Comput. Chem., 32:174–182 (2010).

[16] Dill J. D., Self-Consistent Molecular Orbital Methods. XV. Extended Gaussian-Type Basis Sets for Lithium, Beryllium, and Boron, J. Chem. Phys., 62(7):2921 (1975).

[17] McLean A. D., Chandler G. S., Contracted Gaussian basis Sets for Molecular Calculations. I. Second Row Atoms, Z= 11-18, J. Chem. Phys., 72(10): 5639-5648 (1980).

[18] Francl M.M., Pietro W.J., Hehre W.J., Binkley J.S., Gordon M.S., DeFrees D.J., Pople J.A., Self-Consistent Molecular Orbital Methods. XXIII. A Polarization-Type Basis Set for Second-Row Elements, J. Chem. Phys., 77(7):3654–3665 (1982).

[19] Blaudeau J.-P., McGrath M. P., Curtiss L. A., Radom L., Extension of Gaussian-2 (G2) theory to Molecules Containing Third-Row Atoms K and Ca, J. Chem. Phys., 107(13):5016–5021 (1997).

[20] Krishnan R., Binkley J. S., Seeger R., Pople J. A., Self-Consistent Molecular Orbital Methods. XX. A Basis Set for Correlated Wave Functions, J. Chem. Phys., 72(1):650–654 (1980).

[22] Grimme S., Ehrlich S., Goerigk L., Effect of the Damping Function in Dispersion Corrected Density Functional Theory, J. Comput. Chem., 32(7):1456–1465 (2011).

[23] Manogaran S., Sathyanarayana D. N., Conformational Characterization of S-Methyl Dithiocarbazate by Infrared spectra and Vibrational Assignments, Bull. Chem. Soc. Jpn., 55(8):2628–2632 (Jun. 1982).

[24] Amore-bonapasta A., Battistoni C., Lapiccirella A., Paparazzo E., A Theoretical Study of the Conformational Behaviour of the S-Methyl Ester of Dithiocarbazic Acid, J. Mol. Struct. Theochem., 90(1–2):1–6 (1982).

[25] Lanfredi A. M. M., Tiripicchio A., Camellini M. T., Monaci A., Tarli F., X-Ray and Infrared Structural Studies on the Methyl Ester of Dithiocarbazic Acid and Its N-Substituted Derivatives, J. Chem. Soc., Dalt. Trans., (5):417–422 (1977).

[28] Allen F.H., Bird C.M., Rowland R.S., Raithby P.R., Resonance-Induced Hydrogen Bonding at Sulfur Acceptors in R1R2C=S and R1CS2 Systems, Acta Crystallogr. Sect. B Struct. Sci., 53(4):680–695 (1997).

[29] Contreras-García J., Johnson E. R., Keinan S., Chaudret R., Piquemal J.-P., Beratan D. N., Yang W., NCIPLOT: a Program for Plotting Non-Covalent Interaction Regions, J. Chem. Theory Comput., 7(3):625–632 (2011).

[30] Okulik N., Jubert A. H., Theoretical Analysis of the Reactive Sites of Non-Steroidal Anti-Inflammatory Drugs, Internet Electron. J. Mol. Des, 4:17–30 (2005).

[32] Nikolaienko T. Y., Bulavin L. A., Hovorun D. M., Chemistry C., Nikolaienko T. Y., Bulavin L. A., Hovorun D. M., Chemistry C., JANPA: An Open Source Cross-platform Implementation of the Natural Population Analysis on the Java platform, Comput. Theor. Chem., 1050:15–22 (2014).

[33] Fukui K., Yonezawa T., Shingu H., A Molecular Orbital Theory of Reactivity in Aromatic Hydrocarbons, J. Chem. Phys., 20(4):722–725 (1952).

[34] Mendoza-Huizar L. H., Rios-Reyes C. H., Chemical Reactivity of Atrazine Employing the Fukui Function, J. Mex. Chem. Soc., 55(3):142–147 (2011).

[35] Pearson R.G., Absolute Electronegativity and Hardness Correlated with Molecular Orbital Theory, Proc. Nati. Acad. Sci., 83(November): 8440–8441 (1986).

[36] Pearson R.G., Chemical Hardness and Density Functional Theory, Journal of Chemical Sciences, 117(5):369–377 (2005).

[37] Kurtaran R., Odabaşıoğlu S., Azizoglu A., Kara H., Atakol O., Experimental and Computational Study on [2,6-bis(3,5-dimethyl-N-pyrazolyl)pyridine]-(dithiocyanato)mercury(II), Polyhedron, 26(17): 5069–5074 (2007).

[38] Becke A.D., Edgecombe K.E., A Simple Measure of Electron Localization in Atomic and Molecular Systems, J. Chem. Phys., 92(9): 5397-5403 (1990).

[39] Savin A., Nesper R., Wengert S., Fässler T. F., ELF: The Electron Localization Function, Angew. Chemie Int. Ed. English, 36(17):1808–1832 (1997).

[40] Savin A., Silvi B., Colonna F., Topological Analysis of the Electron Localization Function Applied to Delocalized Bonds, Can. J. Chem., 74:1088–1096 (1996).