Synthesis, X-Rays Analysis, Docking Study and Cholinesterase Inhibition Activity of 2,3-dihydroquinazolin-4(1H)-one Derivatives

Document Type : Research Article

Authors

1 Department of Chemistry, University of Sargodha, Sargodha, PAKISTAN

2 Department of Chemistry, COMSATS Institute of Information Technology, Abbottabad, PAKISTAN

Abstract

In search of potent cholinesterase inhibitors, we have carried out the synthesis and biologically evaluation of various benzaldehyde based 2,3-dihydroquinazolin-4(1H)-one derivatives. In vitro assay results revealed that all the synthesized compounds showed activity against both enzymes (AChE and BChE) and in few cases, the inhibition activity was even higher than or comparable to the standard drug galantamine. Overall, compounds having chloro or methoxy group attached to the para position of benzaldehyde resulted in potent cholinesterase inhibitors. Within the series, Bromo derivatives 4a-i were more active than their un-substituted counterparts. Amongst all, compound 4c (6,8-dibromo-2-(3-bromo-4-chloro-phenyl)-2,3-dihydro-1H-quinazolin-4-one) with selectivity index of 3.7 for AChE, displayed IC50 values of 3.7±1.05 µM (AChE) and 13.7±0.64 µM (BChE) and can be considered as potential lead compound with a feature of dual cholinesterase (AChE/BChE) inhibition. Insight into the mechanism of inhibition of the synthesized compounds was provided by computed binding modes in the active site of AChE and BChE.  Docking study on both isomers of the quinazoline also supported in vitro assay results. Preliminary in silico studies by using online admetSAR server showed that all compounds possessed good pharmacokinetic profile except nitro and methoxy substituted derivatives which were predicted to exhibit AMES toxicity. The synthesized compounds can be used as a structural foundation for the preparation of new potent cholinesterase inhibitors.

Keywords

Main Subjects


[1] Nagaraj A., Reddy C.S., Synthesis and Biological Study of Novel Bis-Chalcones, Bis-thiazines and Bis-Pyrimidines, J. Iran. Chem. Soc., 5(2): 262-7 (2008).
[2] Henary M., Paranjpe S., Owens E.A., Substituted Benzothiazoles: Synthesis and Medicinal Characteristics,  Heterocycl. Commun., 19(2): 89-99 (2013).
[4] Bur S.K., Padwa A., The Pummerer Reaction: Methodology and Strategy for the Synthesis of Heterocyclic Compounds, Chem. Rev., 104(5): 2401-32 (2004).
[5] Evans B.E., Rittle K.E., Bock M.G., DiPardo R.M., Freidinger R.M., Whitter W.L., Lundell G.F.,
Veber D.F., Anderson P.S., Chang R.S., Lotti V.J., Methods for Drug Discovery: Development of Potent, Selective, Orally Effective Cholecystokinin Antagonists, J. Med. Chem., 31(12): 2235-46 (1988).
[6] DeSimone R.W., Currie K.S., Mitchell S.A., Darrow J.W., Pippin D.A., Privileged Structures: Applications in Drug Discovery, Comb. Chem. High Throughput Screening, 7(5): 473-93 (2004).
[7] Delgabo J., Remers W.A., "Wilson and Gisvold's Textbook of Organic Medicinal and Pharmaceutical Chemistry", (Eds.) Lippincott-Raven Publ. New York (2004).
[8] Azizian J., Kefayati H., Mehrdad M., Jadidi K., Sarrafi Y., A Facile One-Pot Method for Synthesis of 2,4-Dichloroquinoline Derivatives, Iran. J. Chem. Chem. Eng.(IJCCE), 20(1): 20-21 (2001).
[9] Shaabani A., Farhangi E., Shaabani S., A Rapid Combinatorial Library Synthesis of Benzazolo[2,1-b]quinazolinones and Triazolo[2,1-b]quinazolinones, Iran. J. Chem. Chem. Eng. (IJCCE), 32(1), 3-10 (2013).
[10] Shaabani A., Bazgir A., Arab Ameri S., Sharifi Kiasaraie M., Samadi S., Comparison of Catalytic Effect of Alkali and Alkaline Earth Metals Hydrogen Sulfate: As the Promoter for an Efficient Synthesis of 3,4-Dihydropyrimidin-2(1H)-ones under Solvent-Free Conditions, Iran. J. Chem. Chem. Eng. (IJCCE), 24(3): 67-71 (2005).
[11] Sarfraz M., Ahmad S., Tariq M.I., Qaiser M.N., Synthesis, in Silico Study and Antiurease Potential of Imine Derivatives, Iran. J. Sci. Technol. Trans. Sci., (2018) https://doi.org/10.1007/s4099.
[12] Joule J.A., Mills K., "Heterocyclic Chemistry at a Glance", John Wiley & Sons (2012).
[13] Flemmig M., Melzig M.F., Serine‐Proteases as Plasminogen Activators in Terms of Fibrinolysis, J. Pharm. Pharmacol., 64(8): 1025-39 (2012).
[14] Whitcomb D.C., Lowe M.E., Human Pancreatic Digestive Enzymes, Dig. Dis. Sci., 52(1): 1-7 (2007).
[16] McGleenon B.M., Dynan K.B., Passmore A.P., Acetylcholinesterase Inhibitors in Alzheimer’s Disease, Br. J. Clin. Pharmacol., 48: 471-480 (1999).
[17] Lane R.M., Potkin S.G., Enz A., Targeting Acetylcholinesterase and Butyrylcholinesterase in Dementia, Int. J. Neuropsychopharmacol., 9: 101-124 (2006).
[19] Mashkovskii M.D., Glushkov R.G., Drugs for the Treatment of Alzheimer's disease, Pharm. Chem. J., 35: 179-182 (2001).
[20] Jamil N., Sultana N., Ashraf R., Sarfraz M., Tariq M.I., Mustaqeem M., Tris-diamine-derived Transition Metal Complexes of Flurbiprofen as Cholinesterase Inhibitors, Trop. J. Pharm. Res., 17 (3): 451-459 (2018).
[21] Sangi D.P., Monteiro J.L., Vanzolini K.L., Cass Q.B., Paixão M.W., Corrêa A.G., Microwave-Assisted Synthesis of N-Heterocycles and Their Evaluation Using an Acetylcholinesterase Immobilized Capillary Reactor, J. Braz. Chem. Soc., 25: 887-889 (2014).
[22] Ahmad S., Iftikhar F., Ullah F., Sadiq A., Rashid U., Rational Design and Synthesis of Dihydropyrimidine Based Dual Binding site Acetylcholinesterase Inhibitors, Bioorg. Chem., 69: 91-101 (2016).
[23] Gawad N.M., Georgey H.H., Youssef R.M., El Sayed N.A., Design, Synthesis, and Anticonvulsant Activity of Novel Quinazolinone Analogues, Med. Chem. Res., 20: 1280-1286 (2011).
[24] El-Hashash M.A., Elshahawi M.M., Ragab E.A., Nagdy S., Synthesis and Antifungal Activity of Novel Quinazolin-4 (3 H)-one Derivatives, Synth. Commun., 45(19): 2240-50 (2015).
[25] Cohen E., Klarberg B., Vaughan Jr J.R., Quinazolinone Sulfonamides. A New Class of Diuretic Agents1, J. Am. Chem. Soc., 82: 2731-2735(1960).
[26] Li Z., Wang B., Hou J.Q., Huang S.L., Ou T.M., Tan J.H., An L.K., Li D., Gu L.Q., Huang Z.S., 2-(2-Indolyl-)-4 (3 H)-quinazolines Derivates as New Inhibitors of AChE: Design, Synthesis, Biological Evaluation and Molecular Modeling, J. Enzym. Inhib. Med. Chem., 28: 583-592 (2013).
[27] Uraz M., Karakuş S., Mohsen U.A., Kaplancıklı Z.A., Rollas S., The Synthesis and Evaluation of Anti-Acetylcholinesterase Activity of Some 4 (3H)-[27] Quinazolinone Derivatives Bearing Substituted 1,3,4-thiadiazole, Marmara Pharm. J., 21: 96-101 (2017).
[28] Sarfraz M., Sultana N., Rashid U., Akram M.S., Sadiq A., Tariq M.I. Synthesis, Biological Evaluation and Docking Studies of 2, 3-Dihydroquinazolin-4 (1H)-one Derivatives as Inhibitors of Cholinesterases,  Bioorg. Chem., 70: 237-244 (2017).
[29] Sultana N., Sarfraz M., Tanoli S.T., Akram M.S., Sadiq A., Rashid U., Tariq M.I., Synthesis, Crystal Structure Determination, Biological Screening and Docking studies of N1-Substituted Derivatives of 2, 3-dihydroquinazolin-4 (1H)-one as Inhibitors of Cholinesterases, Bioorg. Chem., 72: 256-267 (2017).
[30] Sarfraz M., Sultana N., Jamil M., Tariq M.I. Synthesis, in silico study and Cholinesterases Inhibition activity of 2-substituted 2,3-Dihydroquinazolin-4(1H)-one Derivatives, Rev. Roum. Chim., 63(3): 227-234 (2018).
[31] Maiden T.M., Harrity J.P., Recent Developments in Transition Metal Catalysis for Quinazolinone Synthesis, Org. Biomol. Chem., 14: 8014-8025 (2016).
[32] Pouramiri B., Fayazi R., Tavakolinejad Kermani E., Facile and Rapid Synthesis of 3,4-Dihydropyrimidin-2(1H)-one Derivatives Using [Et3NH][HSO4] as Environmentally Benign and Green Catalyst, Iran. J. Chem. Chem. Eng. (IJCCE), 37(1): 159-167 (2018).
[33] Hu B.Q., Wang L.X., Xiang J.F., Yang L., Tang Y.L., Cu (II)-Catalyzed Domino Reaction of 2-Halobenzamide and Arylmethanamine to Construct 2-aryl Quinazolinone, Chin. Chem. Lett., 26: 369-372 (2015).
[34] Kancherla M., Katlakanti M., Seku K., Badathala V., Boric Acid Supported on Montmorillonites as Catalysts for Synthesis of 2,3-dihydroquinazolin-4(1H)-ones, Iran. J. Chem. Chem. Eng. (IJCCE), Article in press (2018).
[37] Escalante J., González-Tototzin M.A., Synthesis, Resolution and Absolute Configuration of Trans 4, 5-diphenyl-pyrrolidin-2-one: a Possible Chiral Auxiliary, Tetrahedron: Asymmetry, 14: 981-985 (2003).
[38] Ellman G.L., Courtney K.D., Andres Jr V., Featherstone R.M., A new and Rapid Colorimetric Determination of Acetylcholinesterase Activity, Biochem. Pharmacol., 7: 88-95 (1961).
[39] Dvir H., Silman I., Harel M., Rosenberry T.L., Sussman J.L., Acetylcholinesterase: from 3D Structure to Function, Chem. Biol. Interact., 187(1-3): 10-22 (2010).
[40] Cheung J., Rudolph M.J., Burshteyn F., Cassidy M.S., Gary E.N., Love J., Franklin M.C., Height J.J., Structures of Human Acetylcholinesterase in Complex with Pharmacologically Important Ligands, J. Med. Chem., 55(22): 10282-10286 (2012).
[41] Verdonk M.L., Cole J.C., Hartshorn M.J., Murray C.W., Taylor R.D., Improved Protein–Ligand Docking Using GOLD, Proteins: Struct. Funct. Bioinf., 52(4): 609-23 (2003).
[42] Sheldrick G.M., A Short History of SHELX, Acta Crystallogr Sect. A: Found. Crystallogr., 64: 112-122 (2008). 
[43] Siemens, "SAINT Area-Detector Control and Integration Software", Siemens Analytical X-ray Instruments Inc., Madison, WI, USA (1995).
[44] Biovia D.S., "Materials Studio Modeling Environment", Dassault Systèmes, San Diego (2015).
[45] Cheng F., Li W., Zhou Y., Shen J., Wu Z., Liu G., Lee P.W., Tang Y., Admet SAR: a Comprehensive Source and Free Tool for Assessment of Chemical ADMET Properties, Chem. Inf. Model., 52: 3099-3105 (2012)
[46] Kola I., Landis J., Can the Pharmaceutical Industry Reduce Attrition Rates?, Nat. Rev. Drug. Discovery, 3: 711-716 (2004).