Synthesis and Characterization of Silver and Gold Nano-Structures on Chitosan-Porous Anodic Alumina Nano-Composite

Document Type: Research Article


1 Department of Chemistry, Mirpur University of Science and Technology (MUST), Mirpur, AJ&K-10250, PAKISTAN

2 Department of Metallurgy and Materials Engineering, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad-45650, PAKISTAN


This study was designed to probe the fabrication of unique silver and gold nano-structures engaging a self-designed chitosan-porous anodic alumina nano-composite as a template. Porous anodic alumina has been manufactured by di-step aluminum anodization in an oxalic acid electrolytic bath. The surface properties of porous anodic alumina were reinforced by chitosan neutralized in sodium hydroxide. Multifarious nano-morphologies of silver, as well as gold nanostructures, were observed. Furthermore, the long chitosan biopolymer chains were degraded by γ-irradiations and the same procedure was employed for modification of porous anodic alumina with γ-degraded chitosan. The morphologies of fabricated silver and gold nanostructures were investigated by scanning electron microscopy, while their composition was evaluated with the help of energy-dispersive X-ray spectroscopy. X-ray diffraction study exposed the face-centered cubic phase for both silver and gold nanostructures. Reflection mode UV-Vis spectroscopy was used to ascertain reflection grooves in the absorption range of silver and gold nanostructures respectively. The technique does not involve any harmful reagent and shows different selectivity than methods in general practice. The achieved results apprised that the fabricated nanostructures offer the advantages of biocompatibility and eco-friendliness for numerous biomedical uses.


Main Subjects

[1] Masuda H., Matsui Y., Yotsuya M., Matsumoto F., Nishio K., Fabrication of Highly Ordered Anodic Porous Alumina Using Self-organized Polystyrene Particle Array, Chem. Lett., 33(5):584-585 (2004).

[2] Lee J., Nigo S., Nakano Y., Kato S., Kitazawa H., Kido G., Structural Analysis of Anodic Porous Alumina Used for Resistive Random Access Memory, Sci. Technol. Adv. Mater., 11(2):025002-025006 (2010).

[3] Rauf A., Mehmood M., Rasheed M.A., Aslam M., The Effects of Electro-polishing on the Nano-channel Ordering of the Porous Anodic Alumina Prepared in Oxalic Acid. J. Solid State Electr., 13(2): 321-332 (2009).

[4] Sulka G.D., Brzozka A., Zaraska L., Jaskula M., Through-hole Membranes of Nano-porous Alumina Formed by Anodizing in Oxalic Acid and their Applications in Fabrication of Nanowire Arrays. Electrochim. Acta., 55(14): 4368-4376 (2010).

[5] Mutalib A., Losic D., Voelcker N.H., Nano-porous Anodic Aluminum Oxide: Advances in Surface Engineering and Emerging Applications, Prog. Mater. Sci., 58(5):636-704 (2013).

[6] Santos A., Kumeria T., Losic D., Nano-porous Anodic Alumina: A Versatile Platform for Optical Biosensors, Materials, 7(6): 4297-4320 (2014).

[7] Borrull J.F., Pallares J., Macias G., Marsal L.F., Nanostructural Engineering of Nanoporous Anodic Alumina for Biosensing Applications, Materials, 7(7): 225-5253 (2014).

[8] Sriram G., Patil P., Bhat M.P., Hegde R.M., Ajeya K.V., Udachyan I., Bhavya M.B., Gatti M.G., Uthappa U.T., Neelgund G.M., Jung H.Y., Current Trends in Nanoporous Anodized Alumina Platforms for Biosensing Applications, J. Nanomater., 2016(2): 2-26 (2016).

[9] Yanagishita T., Kato A., Masuda H., Preparation of Ideally Ordered Through-hole Anodic Porous Alumina Membranes by Two-layer Anodization, Jpn. J. Appl. Phys., 56(3): 035202-035204

[10] Chatterjee S., Sarkar J., Mallick A.B., Roy D., Deb P., Effect of Anodizing Medium on the Morphology and Photoluminescent Property of Porous Alumina Film, J. Eng. Tech., 4(2): 59-62 (2017).

[11] Roslyakov I.V., Elena O.G., Kirill S.N., Role of Electrode Reaction Kinetics in Self-ordering of Porous Anodic Alumina, Electrochim. Acta., 241: 362-369 (2017).

[12] Mezni A., Altalhi T., Saber N.B., Aldalbahi A., Boulehmi S., Santos A., Losic D., Size and Shape-Controlled Synthesis of Well-organised Carbon Nanotubes Using Nanoporous Anodic Alumina with Different Pore Diameters, J. Colloid Interf. Sci., 491: 375-389 (2017).

[13] Zhang Q., Li Y., Xu D., Gu Z., Preparation of Silver Nanowire Arrays in Anodic Aluminum Oxide Templates, J. Mater. Sci. Lett., 20(10): 925-927 (2001).

[14] Nielsch K., Muller F., Li A.P., Gosele U., Uniform Nickel Deposition into Ordered Alumina Pores
by Pulsed Electrodeposition,
Adv. Mater., 12(8): 582-586 (2000).

[15] Krolla M., Blaua W.J., Grandjeanb D., Benfieldb R.E., Luisc F., Paulusc P.M., De-Jongh L.J., Magnetic Properties of Ferromagnetic Nanowires Embedded in Nanoporous Alumina Membranes, J. Magn. Magn. Mater., 249(1-2): 241-245 (2002).

[16] Xu C.L., Li H., Zhao G.Y., Li H.L., Electrodeposition of Ferromagnetic Nanowire Arrays on AAO/Ti/Si Substrate for Ultrahigh-density Magnetic Storage Devices, Mater. Lett., 60(19): 2335-2338 (2006).

[17] Huczko A., Template-Based Synthesis of Nanomaterials, Appl. Phys. A., 70(4): 365-376 (2000).

[18] Shi W., Shen Y., Ge D., Xue M., Cao H., Huang S., Wang J., Zhang G., Zhang F., Functionalized Anodic Aluminum Oxide (AAO) Membranes for Affinity Protein Separation, J. Membrane Sci., 325(2): 801-808 (2008).

[19] Ding Y., Zhang P., Qub Y., Jiang Y., Huang J., Yan W., Liu G., AFM Characterization and Electrochemical Property of Ag Nanowires by Modified AAO Template Method, J. Alloy Compd., 466(1-2): 479-482 (2008).

[20] Hanaoka T.A., Heilmann A., Kroll M.,  Kormann H.P., Sawitowski T., Schmid G., Jutzi P., Klipp A., Kreibig U., Neuendorf R., Alumina Membranes—Templates for Novel Nanocomposites, Appl. Organomet. Chem., 12(5):367-373 (1998).

[21] Noyan A.A., Leontiev A.P., Yakovlev M.V., Roslyakov I.V., Tsirlina G.A., Napolskii K.S., Electrochemical Growth of Nanowires in Anodic Alumina Templates: The Role of Pore Branching, Electrochim. Acta., 226(1): 60-68 (2017).

[22] Chik H., Xu J., Nanometric Superlattices: Non-lithographic Fabrication, Materials, and Prospects, Mater. Sci. Eng., R., 43(4):103-138 (2004).

[23] Shingubara S., Okino O., Murakami Y., Sakaue H., Takahaqi T., Fabrication of Nanohole Array on Si Using Self-organized Porous Alumina Mask, J. Vac. Sci. Technol. B., 19(5): 1901-1904 (2001).

[24] Thorat S., Diaspro A., Scarpellini A., Povia M., Salerno M., Comparative Study of Loading of Anodic Porous Alumina with Silver Nanoparticles Using Different Methods, Mater., 6(1): 206-216 (2013).

[25] Forrer P., Schlottig F., Siegenthaler H., Textor M., Electrochemical Preparation and Surface Properties of Gold Nanowire Arrays Formed by the Template Technique, J. Appl. Electrochem., 30(5):533-541 (2000).

[26] Sulka G.D., Brzozka A., Liu L., Fabrication of Diameter-Modulated and Ultrathin Porous Nanowires in Anodic Aluminum Oxide Templates, Electrochim. Acta., 56(14): 4972-4979 (2011).

[27] Park H., Kim T.H., Kang S.W., Jeong S.H., Nanoscale Reaction Vessels: Highly Ordered Nanocrystal Arrays Inside Porous Anodic Alumina Nanowells, Int. J. Electrochem. Sci., 10(10): 8447 – 8453 (2015).

[28] Choi J., Sauer G., Nielsch K., Wehrspohn R.B., Gosele U., Hexagonally Arranged Monodisperse Silver Nano-wires with Adjustable Diameter and High Aspect Ratio, Chem. Mater., 15(3):776-779 (2003).

[29] Yang R., Sui C., Gong J., Qu L., Silver Nanowires Prepared by Modified AAO Template Method, Mater. Lett., 61(3): 900-903(2007).

[30] Narayan R.J., Aggarwal R., Wei W., Jin C., Monteiro-Riviere N.A., Crombez R., Mechanical and Biological Properties of Nanoporous Carbon Membranes, Biomed. Mater., 3(3): 034107

[31] Lee S.B., Mitchell D.T., Trofin L., Nevanen T.K., Soderlund H., Martin C.R., Antibody-Based Bionanotube Membranes for Enantiomeric Drug Separations, Sci., 296(5576): 2198-2200 (2002).

[33] Skoog S.A., Bayati M.R., Petrochenko P.E., Stafslien S., Daniels J., Cilz N., Antibacterial Activity of Zinc Oxide Coated Nanoporous Alumina, Mater. Sci. Eng. B., 177(12): 992-998 (2012).

[34] Kovtyukhova N.I., Mallouk T.E., Mayer T.S., Templated Surface Sol-gel Synthesis of SiO2 Nanotubes and SiO2 Insulated Metal Nanowires, Adv. Mater., 15(10): 780-785 (2003).

[35] Cameron M.A., Gartland I.P., Smith J.A., Diaz S.F., George S.M., Atomic Layer Deposition of SiO2
and TiO2 in Alumina Tubular Membranes: Pore Reduction and Effect of Surface Species on Gas Transport,
Langmuir, 16(19): 7435-7444 (2000).

[36] Vajandar S.K., Xu D., Markov D.A., Wikswo J.P., Hofmeister W., Li D., SiO2 Coated Porous Anodic Alumina Membranes for High Flow Rate Electroosmotic Pumping, Nanotechnology, 18(27): 275705 (2007).

[37] Matsumoto F., Nishio K., Masuda H., Flow-through-type DNA Array Based on Ideally Ordered Anodic Porous Alumina Substrate, Adv. Mater., 16(23-24): 2105-2108 (2007).

[38] Milka P., Krest I., Keusgen M., Immobilization of Alliinase on Porous Aluminum Oxide, Biotechnol. Bioeng., 69(3): 344-348 (2000).

[39] ter Maat J., Regeling R., Ingham C.J., Weijers C.A., Giesbers M., de Vos W.M., Zuilhof H.. Organic Modification and Subsequent Biofunctionalization of Porous Anodic Alumina Using Terminal Alkynes. Langmuir, 27(22): 13606-13617 (2011).

[40] Aramesh M., Fox K., Lau D.W.M., Fang J.H., Ostrikov K., Prawer S., Cervenka J., Multifunctional Three Dimensional Nanodiamond Nanoporous Alumina Nanoarchitectures, Carbon, 75: 452- 464 (2014).

[41] Skoog S.A., Sumant A.V., Monteiro-Riviere N.A., Narayan R.J., Ultrananocrystalline Diamond-Coated Microporous Silicon Nitride Membranes for Medical Implant Applications, JOM, 64(4): 520-525 (2012).

[42] Karan S., Samitsu S., Peng X., Kurashima K., Ichinose I., Ultrafast Viscous Permeation of Organic Solvents Through Diamond Like Carbon Nanosheets, Sci., 335(6067): 444-447 (2012).

[43] Popat K.C., Mor G., Grimes C.A., Desai T.A., Surface Modification of Nanoporous Alumina Surfaces with Poly(ethylene glycol), Langmuir, 20(19): 8035-8041 (2004).

[44] Lee S.W., Shang H., Haasch R.T., Petrova V., Lee G.U., Transport and Functional Behaviour of Poly(ethylene glycol) Modified Nanoporous Alumina Membranes, Nanotechnology, 16(8): 1335-1340 (2005).

[45] Simovic S., Losic D., Vasilev K., Controlled Drug Release from Porous Materials by Plasma Polymer Deposition, Chem. Commun., 46(8): 1317-1319 (2010).

[46] Aw M.S., Simovic S., Addai-Mensah J., Losic D., Polymeric Micelles in Porous and Nanotubular Implants as a New System for Extended Delivery of Poorly Soluble Drugs, J. Mater. Chem., 21(20): 7082-7089 (2011).

[47] Bruening M.L., Dotzauer D.M., Jain P., Ouyang L., Baker G.L., Creation of Functional Membranes Using Polyelectrolyte Multilayers and Polymer Brushes, Langmuir, 24(15): 7663-7673 (2008).

[48] Nagale M., Kim B.Y., Bruening M.L., Ultrathin, Hyperbranched Poly(Acrylic Acid) Membranes
on Porous Alumina Supports,
J. Am. Chem. Soc., 122(47): 11670-11678 (2000).

[49] Pearce M.E., Jessica B., Melanko, Salem A.K., Multifunctional Nanorods for Biomedical Applications, Pharm. Res., 24(12): 2335-2352 (2007).

[52] Kumar M.N.V.R., A Review of Chitin and Chitosan Applications, React. Funct. Polym., 46(1): 1-27 (2000).

[53] Lee M., Chen B.Y., Den W., Chitosan as a Natural Polymer for Heterogeneous Catalysts Support:
A Short Review on its Applications,
Appl. Sci., 5(4): 1272-1283 (2015).

[54] Austin P.R., Brine C.J., Castle J.E., Zikakis J.P., Chitin: New facets of research. Sci., 212(4496):749-753 (1981).

[55] Raoufi M., Aslankoohi N., Mollenhauer C., Boehm H., Spatz J.P., Bruggemann D., Template-Assisted Extrusion of Biopolymer Nanofibers Under Physiological Conditions, Integr. Biol-UK, 8: 1059-1066 (2016).

[56] Berger J., Reist M., Mayer J.M., Felt O., Gurny R., Structure and Interactions in Chitosan Hydrogels Formed by Complexation or Aggregation for Biomedical Applications, Eur. J. Pharm. Biopharm., 57 (1): 35-52 (2004).

[57] Mohanasrinivasan V., Mishra M., Paliwal J.S., Singh S.K., Selvarajan E., Suganthi V., Devi C.S., Studies on Heavy Metal Removal Efficiency and Antibacterial Activity of Chitosan Prepared from Shrimp Shell Waste, 3 Biotech., 4(2): 167-175 (2014).

[58] Huang H., Yuan Q., Yang X., Morphology Study of Gold–Chitosan Nanocomposites, J. Colloid Interf. Sci., 282(1):26-31(2005).

[59] Wang M., Qiang J., Fang Y., Hu D., Cui Y., Fu X., Preparation and Properties of Chitosan‐Poly (N‐isopropylacrylamide) Semi‐IPN Hydrogels, J. Polym. Sci. Pol. Chem., 38(3): 474-481 (2000).

[60] Wang B., Chen K., Jiang S., Reincke F.O., Tong W., Wang D., Gao C., Chitosan-Mediated Synthesis of Gold Nanoparticles on Patterned Poly (dimethylsiloxane) Surfaces, Biomacromolecules., 7(4):1203-1209 (2006).

[61] Sun L., Yuan Z., Gong W., Zhang L., Xu Z., Su G., Han D., The Mechanism Study of Trace Cr (VI) Removal from Water Using Fe 0 Nanorods Modified with Chitosan in Porous Anodic Alumina, Appl. Surf. Sci., 328(15): 606-613 (2015).

[62] Shi W., Shen Y., Ge D., Xue M., Cao H., Huang S., Wang J., Zhang G., Zhang F., Functionalized Anodic Aluminum Oxide (AAO) Membranes for Affinity Protein Separation, J. Membrane Sci., 325(2): 801-808 (2008).

[63] Mehmood M., Rauf A., Rasheed M.A, Saeed S., Akhter J.I., Ahmad J., Aslam M., Preparation of Transparent Anodic Alumina with Ordered Nanochannels by Through-thickness Anodic Oxidation of Aluminum Sheet,  Mater. Chem. Phys., 104(2-3): 306-311 (2007).

[64] Huang Y., Yu H., Guo L., Huang Q., Structure and Self-Assembly Properties of a New Chitosan-Based Amphiphile, J. Phys. Chem. B., 114(23):7719-7726 (2010).

[65] Tahtat D., Uzun C., Mahlous M., Güven O., Beneficial Effect of Gamma Irradiation on the N-Deacetylation of Chitin to Form Chitosan, Nucl. Instrum. Methods Phys. Res., Sect. B, 265(1): 425-428 (2007).

[66] Zainol I., Akil H.M., Mastor A., Effect of γ-irradiation on the Physical and Mechanical Properties of Chitosan Powder, Mater. Sci. Eng., C, 29(1): 292-297 (2009).

[67] Baroudi A., García-Payo C., Khayet M., Structural, Mechanical, and Transport Properties of Electron Beam-irradiated Chitosan Membranes at Different Doses, Polymers, 10(2): 117-140 (2018).

[68] Nho Y.C., Park S.E., Kim H.I., Hwang T.S., Retracted: Oral Delivery of Insulin Using pH-Sensitive Hydrogels Based on Polyvinyl Alcohol Grafted with Acrylic Acid/Methacrylic Acid by Radiation, Nucl. Instrum. Methods Phys. Res., Sect. B, 236(1-4): 283-288 (2005).

[69] Islam A., Yasin T., Rehman I.U., Synthesis osf Hybrid Polymer Networks of Irradiated Chitosan/Poly (vinyl alcohol) for Biomedical Applications, Radiat. Phys. Chem., 96: 115- 119 (2014).

[70] Wasikiewicz J.M., Yoshii F., Nagasawa N., Wach R.A., Mitomo H., Degradation of Chitosan and Sodium Alginate by Gamma Radiation, Sonochemical and Ultraviolet MethodsRadiat. Phys. Chem., 73(5): 287-295 (2005).

[71] Dubey K.A., Bhardwaj Y.K., Chaudhari C.V., Kumar V., Goel N.K., Sabharwal S., Radiation Processed Ethylene Vinyl Acetate-Multiple Walled Carbon Nanotube Nano-Composites: Effect of MWNT Addition on the Gel Content and Crosslinking Density, Express Polym. Lett., 3(8): 492-500 (2009).

[72] Lundvall O., Gulppi M., Paez M.A., Gonzalez E., Zagal J.H., Pavez J., Thompson G. E., Copper Modified Chitosan for Protection of AA-2024, Surf. Coat. Tech., 201(12): 5973-5978 (2007).

[73] Huang H., Yuan Q., Yang X., Preparation and Characterization of Metal–chitosan Nanocomposites, Colloids Surfaces B., 39(1-2): 31-37 (2004).

[74] Kumirska J., Czerwicka M., Kaczyński Z., Bychowska A., Brzozowski K., Thöming J., Stepnowski P., Application of Spectroscopic Methods for Structural Analysis of Chitin and Chitosan, Mar. Drugs, 8(5): 1567-1636 (2010).

[75] Zhang Y., Xue C., Xue Y., Gao R., Zhang X., Determination of the Degree of Deacetylation of Chitin and Chitosan by X-ray Powder Diffraction, Carbohyd. Res., 340(11): 1914-1917 (2005).

[76] Ngah, W.S.W., Teong L.C., Hanafiah M.A.K.M., Adsorption of Dyes and Heavy Metal Ions by Chitosan Composites: A Review, Carbohyd. Polym., 83(4): 1446-1456 (2011).

[77] Paramelle D., Sadovoy A., Gorelik S., Free P., Hobley J., Fernig D.G., A Rapid Method to Estimate the Concentration of Citrate Capped Silver Nanoparticles from UV-Visible Light Spectra, Analyst, 139(19): 4855-4861 (2014).

[78] Zuber A., Purdey M., Schartner E., Forbes C., Hoek B.V.D., Giles D., Abell A., Monro T., Heidepriem H.E., Detection of Gold Nanoparticles with Different Sizes Using Absorption and Fluorescence Based Method, Sensor Actuat., B Chem., 227: 117-127 (2016).

[79] Rahman S., Size and Concentration Analysis of Gold Nanoparticles with Ultraviolet-Visible Spectroscopy, Undergraduate J. Math. Modeling: One + Two (UJMM), 7(1): 2 (2016).

[81] Budhiraja N., Sharma A., Dahiya S., Parmar R., Vidyadharan V., Synthesis and Optical Characteristics of Silver Nanoparticles on Different Substrates, Int. Lett. Chem. Phys. Astron., 14: 80-88 (2013).