Chemical Dynamics of Monodispersed Iron Oxide Nanoparticles

Document Type: Research Article

Authors

Nanoscience/ Nanotechnology and Tribology Laboratory National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar-25120, Khyber Pakhtunkhwa, PAKISTAN

Abstract

This study is comprised of the synthesis and characterization of uniform fine particles of iron oxide in different shapes and sizes. Varying amounts of iron (III) chloride and sodium dihydrogen phosphate was heated at 98 oC for various periods, following the forced hydrolysis method. Scanning electron microscopic analysis showed that the shape and size of the precipitated particles were dependent on the applied experimental conditions. Selected batches of the synthesized particles were characterized by various physical methods i.e., XRD, FT-IR, electrophoretic mobility to confirm their identity. The high concentration of phosphate ions tended the particles to grow lengthwise so as the morphology of the precipitated particles change from spherical (axial ratio 1) to ellipsoidal (axial ratio 6) shape. The excess amount of ferric chloride in the reaction, medium facilitated the growth of the primarily formed particles. The particle size increased with aging and attained a limiting value in 94 h. All the solids were crystalline and the observed peaks in the XRD patterns corresponded to iron (III) oxide. These findings are important in developing a facile and robust method for the synthesis of monodispersed particles of various metal oxides and controlling their size and shape.

Keywords

Main Subjects


[1] Zhong L., Hu J., Liang H., Cao A., Song W., Wan L., Self-Assembled 3D Flowerlike Iron Oxide Nanostructures and Their Application in Water Treatment, Adv. Mater., 18: 2426-2431 (2006).

[2] Chen J.S., Zhu T., Yang X.H., Yang H.G., Lou X.W., Top-Down Fabrication of α-Fe2O3 Single-Crystal Nanodiscs and Microparticles with Tunable Porosity for Largely Improved Lithium Storage Properties, J. Am. Chem. Soc., 132: 13162-13164 (2010).

[3] Kodama R.H., Makholoufand S.A., Berkowitz A.E., Finite Size Effects in Antiferromagnetic NiO Nanoparticles, Phys. Rev. Lett., 79(7): 1393-1396 (1997).

[4] Jiang J.Z., Lin K., Lin W., Gas-Sensitive Properties and Structure of Nanostructured (α-Fe2O3)x–(SnO2)1−x Materials Prepared by Mechanical Alloying, J. Phys., D, Appl. Phys., 30: 1459-1467 (1997).

[5] Dimitrov D.V., Hadjipanayis G.C., Papaefthymiou V., Surface-Induced Magnetism in a-Fe2O3/Ag Multilayers, J. Magn. Magn. Mater., 188(1): 8-16 (1998).

[6] Suber L., Fiorani D., Imperatori P., Effects of Thermal Teatments on Structural and Magnetic Properties of Acicular a-Fe2O3 Nanoparticles, Nanostruct. Mater., 11(6): 797-803 (1999).

[7] Liu X.Q., Tao S.W., Shen Y.S., Preparation and Characterization of Nanocrystalline c –Fe2O3 by a Sol-Gel Process, Sens. Actuators, B, Chem., 40(2): 161-165 (1997).

[8] Wu P.C., Wang W.S., Huang Y.T., Sheu H.S., Lo Y., Tsai T., Shieh D.B., Yeh C.S., Porous Iron Oxide Based Nanorods Developed as Delivery Nanocapsules, Chemistry Eur. J., 13(14): 3878-3885  (2007).

[9] Chirita M., Grozescu I., Fe2O3 - Nanoparticles, Physical Properties and Their Photochemical and Photoelectrochemical Applications, Chem. Bull. "POLITEHNICA”, Univ. (Timişoara), 54(68): 1-8 (2009).

[10] Sun H.T., Cantalini C., Faccio M., Pelino M., Cantalano M., Trapfer L., Porous Silica‐Coated α‐Fe2O3 Ceramics for Humidity Measurement at Elevated Temperature, J. Am. Ceram. Soc., 79(4): 927-937 (1996).

[11] Liu X., Fu S., Xiao H., Huang C., Preparation and Characterization of Shuttle-Like a-Fe2O3 Nanoparticles by Supermolecular Template, Solid State Chem., 178: 2798-2803 (2005).

[12] Apte S.K., Naik S.D., Sonawane R.S., Kale B.B., Baeg J.O., Synthesis of Nanosize‐Necked Structure α‐ and γ‐Fe2O3 and its Photocatalytic Activity, J. Am.Ceram. Soc., 90(2): 412-414 (2007).

[13] Zhang H., Wang W.W., Li H.F., Meng S.L., Li D.Q., A Strategy to Prepare Ultrafine Dispersed Fe2O3 Nanoparticles, Mater. Lett., 62(8): 1230-1233 (2008).

[14] Dong W.T., Zhu C.S., Use of Ethylene Oxide in the Sol–Gel Synthesis of α-Fe2O3 Nanoparticles from Fe(III) Salts, J. Mater. Chem., 12: 1676-1683 (2002).

[15] Hyeon T., Lee S.S., Park J., Synthesis of Highly Crystalline and Monodisperse Maghemite Nanocrystallites without a Size-Selection Process, J. Am.Chem. Soc., 123(51): 12798-12801 (2001).

[16] Music S., Krehula S., Popovic S., Skoko Z., Some Factors Influencing Forced Hydrolysis of FeCl3 Solutions, Mater. Lett., 57: 1096-1102 (2003).

[17] Matijevic E., The Role of Chemical Complexing in the Formation and Stability of Colloidal Dispersions, J. Colloid Interface Sci., 58(2): 374-389 (1977).

[19] Music´ S., Ve´rtes A., Simmons G.W., Czako´-Nagy I., Leidheiser Jr. H., Mössbauer Spectroscopic Study
of the Formation of Fe(III) Oxyhydroxides and Oxides by Hydrolysis of Aqueous Fe(III) Salt Solutions
, J. Colloid Interface Sci., 85(1): 256-266 (1982).

[20] Gotic´ M., Popovic´ S., Ljubes ˇic´ N., Music S., Structural Properties of Precipitates Formed by Hydrolysis of Fe3+ Ions in Aqueous Solutions Containing NO3 and Cl Ions, J. Mater. Sci., 29(9): 2474-2480 (1994).

[22] Kandori K., Yasukawa A., Ishikawa T., Influence of Amines on Formation and Texture of Uniform Hematite Particles, J. Colloid Interface Sci., 180: 446-452 (1996).

[23] Kandori K., Nakamoto Y., Yasukawa A., Ishikawa T., Factors in the Precipitation Medium Governing Morphology and Structure of Haematite Particles in Forced Hydrolysis Reaction, J. Colloid Interface Sci., 202: 499-506 (1998).

[24] Ishikawa T., Komagai M., Yasukawa A., Kandori K., Nakayama T., Yuse F., Influences of Metal Ions on the Formation of γ-FeOOH and Magnetite Rusts, Corrosion Science, 44(5): 1073-1086  (2002).

[25] Ozaki M., Kratohvil S., Matijevic E., Formation of Monodispersed Spindle-Type Hematite Particles, J. Colloid Interface Sci., 102(1): 146-151 (1984).

26] Reeves N.J., Mann S., Influence of Inorganic and Organic Additives on the tailored Synthesis of Iron Oxides, J. Chem. Soc. Faraday Trans., 87(24): 3875-3880 (1991).

[27] Morales M.P., Gonza ´les-Carren ˜o T., Serna C.J., The Formation of a–Fe2O3 Monodispersed Particles in Solution, J. Mater. Res., 7(9): 2538-2545 (1992).

[28] Sugimoto T., Maramatsu A., Formation Mechanism of Monodispersed α-Fe2O3Particles in Dilute FeCl3 Solutions, J. Colloid Interface Sci., 184(2): 626-638 (1996).

[29] Ocan˜a M., Morales M.P., Serna C.J., Homogeneous Precipitation of Uniform α-Fe2O3Particles from Iron Salts Solutions in the Presence of Urea, J. Colloid Interface Sci., 212(2): 317-323 (1999).

[30] Kandori K., Yamamoto N., Yasukawa A., Ishikawa T., Preparation and Characterization of Disk-Shaped Hematite Particles by a Forced Hydrolysis Reaction in the Presence of Polyvinyl Alcohol, Phys. Chem. Chem. Phys., 4: 6116-6122 (2002).

[32] Ruiz M.C., Zapata J., Padilla R., Effect of Variables on the Quality of Hematite Precipitated from Sulfate Solutions, Hydrometallurgy, 89(1-2): 32-39 (2007).

[33] Yu W., Hui L., Preparation of Nano-Needle Hematite Particles in Solution, Mater. Res. Bull., 34(8): 1227-1231 (1999).

[34] Kandori K., Ohnishi S., Fukusumi M., Morisada Y., Effects of Anions on the Morphology and Structure of Hematite Particles Produced from Forced Hydrolysis of Fe(NO3)3–HNO3, Colloids Surf., A 331(3): 232-238 (2008).

[35] Liu X., Guo J., Cheng Y., Li Y., Xu G., Cui P., Surfactant-Free Fabrication of α-Fe2O3 Structures with Flower-Like Morphology in Aqueous Solution,  J. Cryst. Growth., 311(1): 147-151 (2008).

[36] Schutz M., Burckhardt W., Barth S.T., Investigations on Thermally Forced Hydrolysis and Phase Formation in Aqueous Iron(III) Nitrate Solutions,  J. Mater. Sci., 34(9): 2217-2227 (1999). 

[37] Sugimoto T., Wang Y., Itoh H., Muramatsu A., Systematic Control of Size, Shape and Internal Structure of Monodisperse α-Fe2O3 Particles, Colloids Surf., A. 134(3): 265-279 (1998). 

[38] Wang W., Jane Y. Howe, G. Baohua, Structure and Morphology Evolution of Hematite (α-Fe2O3) Nanoparticles in Forced Hydrolysis of Ferric Chloride, J. Phys. Chem. C, 112(25): 9203-9208 (2008).

[39] Itoh H., Sugimoto T., Systematic Control of Size, Shape, Structure, and Magnetic Properties of Uniform Magnetite and Maghemite Particles, J. Colloid Interface Sci., 265(2): 283-295 (2003). 

[40] Kandori K., Hori N., Ishikawa T., Preparation of Mesoporous Hematite Particles by a Forced Hydrolysis Reaction Accompanying a Peptide Production Reaction, Colloids Surf., A 290(1-3): 280-287 (2006).

[41] Liu H., Wei Y., Li P., Zhang Y., Sun Y., Catalytic Synthesis of Nanosized Hematite Particles in Solution, Mater. Chem. Phys., 102(1): 1-6 (2007).

[42] Liu C.,  Li F., Li X.,  Zhang G.,  Kuang Y., The Effect of Iron Oxides and Oxalate on the Photodegradation of 2-Mercaptobenzothiazole, J. Mol. Catal. A: Chem., 252(1-2): 40-48 (2006).

[43] Music S., Czako-Nagy I., Salaj-Obelic I., Ljubesic N., Formation of α-Fe2O3 Particles in Aqueous Medium and Their Properties, Mater. Lett., 32(5-6): 301-305 (1997).

[44] Sahoo S.K., Agarwal K., Singh A.K., Polke B.G., Raha K.C., Characterization of γ- and α-Fe2O3 Nano Powders Synthesized by Emulsion Precipitation-Calcination Route and Rheological Behaviour of α-Fe2O3,  Ijest, 2(8): 118-126 (2010).

[45] Sridarane R., Raje G., Shanmukaraj D., Kalaiselvi B.J., Santhi M., Subramanian S., Mohan S., Palanivel B., Murugan R., Investigations on Temperature Dependent Structural Evolution of NaPO3 Glass, J. Therm. Anal. Calorim., 75(1): 169-178 (2004).

[46] Haq I., Matijević E., Preparation and Properties of Uniform Coated Inorganic Colloidal Particles, J. Colloid Interface Sci., 192(1): 104-113 (1997).

[47] Plaza R.C., Gonzalez-caballero F., Delgado A.V., Electrical Surface Charge and Potential of Hematite/Yttrium Oxide Core–Shell Colloidal Particles, Colloid Polym. Sci., 279(12): 1206-1211 (2001).