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ABSTRACT: A new magnetically separable organic-inorganic nanohybrid catalyst denoted  

as CuFe2O4@SiO2@C3-Pyrazole-C4SO3-H2PW was successfully prepared by grafting of  

a functionalized ionic liquid containing a pyrazolium cation with a phosphotungstic counter-anion 

H2PW12O40
¯ (H2PW) on silica-coated copper ferrite magnetic nanoparticles (CuFe2O4@SiO2).  

The prepared catalyst was fully characterized using scanning electron microscopy, transmission 

electron microscopy, energy-dispersive X-ray analysis, inductively coupled plasma optical emission 

spectrometry, Fourier transform infrared spectroscopy, and vibrating sample magnetometry.  

The catalytic activity of CuFe2O4@SiO2@C3-Pyrazole-C4SO3-H2PW as a novel heterogeneous catalyst 

was probed in the synthesis of polyhydroquinolines by one-pot condensation of dimedone,  

an aromatic aldehyde, ammonium acetate, and ethyl acetoacetate. The results demonstrated  

a significant catalytic performance of the catalyst for this transformation under solvent-free 

conditions, giving high yields of the products over short reaction time. Also, the magnetic 

nanocatalyst could be easily recovered from the reaction mixture and reused many times with  

no significant loss of its catalytic activity. 
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INTRODUCTION 

Although, acidic Ionic Liquids (ILs) with high thermal 

stability, extremely low vapor pressure and low toxicity 

are suitable substitute catalysts for conventional acids 

such as AlCl3, FeCl3, HF, and H2SO4 [1-8], the danger of  

 

 

 

catalyst leaching and the difficulties of product isolation 

from ILs remain. The preparing organic-inorganic hybrid 

catalysts by linking ILs with organic linkers  

to inorganic solid supports can solve these  
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problems [9-12]. These immobilized ILs maintain  

the advantages of both IL and support and thus help reduce 

the cost and overcome the viscosity and leaching of ILs. 

The choice of efficient support could significantly 

improve the activity, selectivity, recycling, and 

reproducibility of catalyst systems. For this purpose, 

recently, Magnetic NanoParticles (MNPs) with high 

thermal and mechanical stability have attracted much 

attention not only for their high surface area which 

enhances the contact between reactants and catalyst and 

thus increase the activity but also for their simple 

separation from the reaction medium by an external 

permanent magnet, preventing the loss of catalyst [13-17]. 

In this regard, a few MNPs supports immobilized ILs that 

have been prepared which showed good catalytic activity 

in some organic transformations [18-22]. These facts 

prompted us to prepare and investigate the catalytic behavior 

of a novel MNPs immobilized acidic ionic liquid. 

Polyhydroquinolines are a class of fused  

1,4-dihydropyridines which have received less attention 

than other fused 1,4-dihydropyridines and comparatively 

very few methods for their preparation have been 

reported. Polyhydroquinolines are generally synthesized 

by unsymmetrical Hantzsch reaction which involves  

the one-pot four-component condensation of dimedone, 

aldehydes, ammonium acetate, and ethyl acetoacetate 

using a catalyst [23-37]. Synthesis of these compounds 

using microwave irradiation [38], and solar thermal energy [39] 

has also been reported. Nevertheless, the development of 

new efficient recyclable catalysts for the synthesis  

of polyhydroquinolines was of a certain demand. 

Heteropolyacids (HPAs) have been particularly used 

as a catalyst in organic transformations due to their strong 

acidity [40, 41]. Among the Keggin HPAs, phosphotungstic 

acid (H3PW12O40, denoted as H3PW in the present paper) 

has the highest acidity approaching the superacid region 

and exhibits stronger acidity as compared to mineral 

acids [42, 43]. Since the catalytic activity of a catalyst  

can be improved by its immobilization on a large surface area 

support, a few reports, firstly by Luo and co-workers [44], 

have recently appeared in the literature for immobilization of 

H3PW, on MNPs materials [45-47]. The immobilized 

catalysts performed well and demonstrated a high level of 

catalytic activity in some organic reactions. 

In this view and line with our interest in heterocycles 

[48-50], ILs [4-6,51,52], and catalysis [53-55], in this paper, 

for the first time, a novel functionalized pyrazolium-based 

ionic liquid containing a phosphotungstic counter-anion 

H2PW12O40
¯ (H2PW) immobilized on CuFe2O4@SiO2 

MNPs was prepared and fully characterized (Scheme 1). 

The catalytic activity of this new material which was 

denoted as CuFe2O4@SiO2@C3-Pyrazole-C4SO3-H2PW 

was also investigated in the one-pot synthesis of 

polyhydroquinolines by condensation of dimedone,  

an aldehyde, ammonium acetate, and ethyl acetoacetate 

(Scheme 2). 

 

EXPERIMENTAL SECTION  

3,5-Dimethyl-1H-pyrazole was prepared according  

to the literature procedure [56]. All other chemicals were 

available commercially and used without additional 

purification. Melting points were recorded with a Stuart 

SMP3 melting point apparatus. The 1H NMR (300 MHz) 

spectra were recorded on a Bruker 300 FT spectrometer, 

in DMSO-d6 as the solvent using tetramethylsilane (TMS) as 

an internal standard. Fourier Transform InfraRed (FT-IR) 

spectra were obtained using a Tensor 27 Bruker 

spectrophotometer as KBr disks. Ultrasonication  

was performed using a Soltec sonicator at a frequency of 

40 kHz and a nominal power of 260 W. Scanning 

electron microscopy (SEM) analysis was done using  

a MIRA3 TESCAN scanning electron microscope operated 

at an accelerating voltage of 30 kV. Transmission 

Electron Microscopy (TEM) analysis was performed 

using a Leo 912 AB microscope (Zeiss, Germany)  

with an accelerating voltage of 120 kV. Energy-Dispersive  

X-ray (EDX) analysis was performed using a SAMX 

model instrument. The amount of tungsten in the catalyst 

was determined using Inductively Coupled Optical 

Emission Spectroscopy (ICP-OES) conducted with  

a Spectro Arcos model spectrometer. Magnetization 

curves were obtained with a MDKFT Vibrating Sample 

Magnetometer (VSM). 

 

Preparation of CuFe2O4 MNPs 

CuFe2O4 MNPs were prepared by co-precipitation  

of Cu(NO3)2 and Fe(NO3)3 in water in the presence  

of sodium hydroxide according to the literature procedure [57]. 

Briefly, to a solution of Fe(NO3)3·9H2O (2.02 g, 5 mmol) 

and Cu(NO3)2·3H2O (0.60 g, 2.5 mmol) in distiller water 

(10 ml), aqueous NaOH (4M, 7.5 mL, 30 mmol)  

was added at room temperature over 10 min 
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Scheme 1: Preparation of CuFe2O4@SiO2@C3-Pyrazole-C4SO3-H2PW MNPs. 

 

 

 

 

 

 

 

 

 

 

 
 

Scheme 2: CuFe2O4@SiO2@C3-Pyrazole-C4SO3-H2PW MNPs catalyzed synthesis of polyhydroquinolines. 

 

to form a reddish-black precipitate. Then, the reaction 

mixture was warmed to 90 °C and stirred for 2 h.  

After cooling to room temperature, magnetic particles 

were collected by a magnetic separator, washed several 

times with water and kept in air oven overnight at 80 °C. 

The resulting particles were finely ground with a pestle 

and mortar and kept in a furnace at 800 °C for 5 h (at a 

heating rate of 20 °C/min), and then slowly cooled to 

room temperature to form CuFe2O4 MNPs. 

Preparation of CuFe2O4@SiO2 MNPs 

CuFe2O4@SiO2 MNPs were prepared by the sol-gel 

method according to the literature procedure [58].  

The nano CuFe2O4 (2.0 g, 8.5 mmol) was ultrasonically 

dispersed in ethanol (25 mL) for 2 h at 60 °C and then  

a 25% aqueous ammonia (10 mL) was added to the mixture 

and stirred at 60 °C for 40 min. Then tetraethyl 

orthosilicate (TEOS) (1.0 mL) was added (as the silica 

source) to the mixture and stirring was continued 
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at the same temperature for 24 h. The suspended silica-

coated MNPs were collected by a permanent magnet, 

washed three times with methanol and dried in a vacuum  

at 50 °C for 48 h. The resulting CuFe2O4@SiO2 MNPs 

were then calcinated at 800 °C for 4 h. 

 

Preparation of CuFe2O4@SiO2@C3-Pyrazole MNPs 

Similar to the method reported by Soni et al. [59], 

firstly, CuFe2O4@SiO2 MNPs (2.0 g) were ultrasonically 

dispersed in dry toluene (5 mL) and then (3-chloropropyl) 

triethoxysilane (2.0 mL) was added. The mixture was stirred 

at room temperature for 15 min and then refluxed  

for 24 h. After cooling to room temperature, the obtained 

solid was isolated using an external permanent magnet 

and repeatedly washed with toluene and dried under 

vacuum at 80 °C for 8 h to form CuFe2O4@SiO2@C3Cl 

MNPs. These MNPs (2.0 g) were ultrasonically dispersed 

in dry toluene (5 ml) for 15 min at 60 °C and then  

3,5-dimethyl-1H-pyrazole (8 mmol) was added and  

the mixture was heated under reflux for 24 h. After cooling 

to room temperature, the new MNPs were collected and 

repeatedly washed with toluene and dried under vacuum 

at 80 °C for 5 h to form CuFe2O4@SiO2@C3-Pyrazole MNPs. 

 

Preparation of CuFe2O4@SiO2@C3-Pyrazole-C4SO3-

H2PW MNPs 

The CuFe2O4@SiO2@C3-Pyrazole MNPs (2.0 g)  

were sonicated in dry toluene (7 mL) for 20 min at 60 °C 

and then 1,4-butane sultone (12 mmol) was added 

dropwise for 20 min and the mixture was refluxed for 6 h. 

After cooling to room temperature, the solid was collected 

using a permanent magnet and repeatedly washed with dry 

toluene and dried under vacuum at 70 °C for 3 h to form 

CuFe2O4@SiO2@C3-Pyrazole-C4SO3 MNPs. These MNPs 

(2.0 g) were then ultrasonically dispersed in dry THF (8 mL) 

for 20 min at 60 °C and H3PW12O40 (3 mmol) was added 

and sonication continued for another 1 h. The resulting 

MNPs were isolated by magnetic decantation and washed 

with dry THF and dried under vacuum at 60 °C for 24 h  

to form CuFe2O4@SiO2@C3-Pyrazole-C4SO3-H2PW MNPs. 

 

General procedure for the synthesis of 

polyhydroquinolines 5a-k catalyzed by CuFe2O4@SiO2 

@C3-Pyrazole-C4SO3-H2PW MNPs  

A mixture of dimedone 1 (1.0 mmol), an aromatic 

aldehyde 2a-k (1.0 mmol), ammonium acetate 3 (1.0 mmol), 

ethyl acetoacetate 4 (1.0 mmol), and 

CuFe2O4@SiO2@C3-Pyrazole-C4SO3-H2PW MNPs (0.02 

g) was heated in an oil bath at 90 °C for a few minutes. 

The reaction was monitored by TLC. Upon completion  

of the transformation, the reaction mixture was cooled  

to room temperature and hot ethanol was added.  

The catalyst was recycled by magnetic decantation  

and washed with ethanol and dried under vacuum at 60 °C 

for 1 h. The combined filtrates were concentrated and 

allowed to stand at room temperature until precipitation 

occurred. The precipitate was recrystallized from ethanol 

to give compounds 5a-k in high yields. All the products 

were known and characterized by comparison of their 

melting points with those of authentic samples and  

for some cases using 1H NMR and IR spectral data.  

The spectral data of the products have also been reported 

in references [27, 29, 31 and 34].  

 

Selected 1H NMR and FT-IR data  

Ethyl 4-(2-chlorophenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8- 

hexahydroquinoline-3-carboxylate 5b (Table 2, entry 2).  
1H NMR (ppm):  0.84 (s, 3H, CH3), 1.00 (s, 3H, 

CH3), 1.07 (t, J = 7.2 Hz, 3H, CH3), 1.91 (d, J = 15.9 Hz, 

1H, one proton of diastereotopic protons in CH2), 2.14 (d, 

J = 15.9 Hz, 1H, one proton of diastereotopic protons in 

CH2), 2.25 (s, 3H, CH3 overlapped with one proton of 

diastereotopic protons in CH2), 2.27 (d, J = 16.8 Hz, 1H, 

one proton of diastereotopic protons in CH2 overlapped 

with CH3), 2.42 (d, J = 16.8 Hz, 1H, one proton of 

diastereotopic protons in CH2), 3.85-4.00 (m, 2H, 

diastereotopic protons in OCH2), 5.20 (s, 1H, CH), 7.05 

(td, J = 7.5, 1.5 Hz, 1H, Harom), 7.14 (td, J = 7.5, 1.2 Hz, 

1H, Harom), 7.21 (dd, J = 7.8, 1.2 Hz, 1H, Harom), 7.29 (dd, 

J = 7.8, 1.5 Hz, 1H, Harom), 9.08 (s br., 1H, NH); FT-IR 

(cm-1): υ 3293, 3209, 3073, 2961, 1698, 1609, 1482, 

1379, 1279, 1213, 1152, 1107, 1071, 1032, 755.   

 

Ethyl 4-(4-chlorophenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8- 

hexahydroquinoline-3-carboxylate 5d (Table 2, entry 4) 
1H NMR (ppm):  0.82 (s, 3H, CH3), 0.99 (s, 3H, 

CH3), 1.11 (t, 3H, J = 7.2 Hz, CH3), 1.96 (d, J = 15.9 Hz, 

1H, one proton of diastereotopic protons in CH2), 2.16 (d, 

J = 16.2 Hz, 1H, one proton of diastereotopic protons in 

CH2), 2.23-2.31 (m, 4H, a doublet for one proton of 

diastereotopic protons in CH2 ovelapped with a singlet for 

CH3), 2.41 (d, J = 17.1 Hz, 1H, one proton of 
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diastereotopic protons in CH2), 3.96 (q, J = 7.2 Hz, 2H, 

OCH2), 4.83 (s, 1H, CH), 7.14 (d, J = 8.7 Hz, 2H, Harom), 

7.26 (d, J = 8.7 Hz, 2H, Harom), 9.10 (s br., 1H, NH); FT-

IR (cm-1): υ 3276, 3205, 3078, 2963, 1706, 1648, 1606, 

1492, 1382, 1280, 1216, 1155, 1108, 1072, 1031, 846, 755.   

 

Ethyl 4-(3-bromophenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8- 

hexahydroquinoline-3-carboxylate 5e (Table 2, entry 5) 
1H NMR (ppm):  0.85 (s, 3H, CH3), 1.00 (s, 3H, 

CH3), 1.12 (t, 3H, J = 7.2 Hz, CH3), 1.99 (d, J = 16.2 Hz, 

1H, one proton of diastereotopic protons in CH2), 2.17 (d, 

J = 16.2 Hz, 1H, one proton of diastereotopic protons in 

CH2), 2.30 (s, 3H, CH3 overlapped with one proton of 

diastereotopic protons in CH2), 2.31 (d, J = 16.8 Hz, 1H, 

one proton of diastereotopic protons in CH2 overlapped 

with CH3), 2.42 (d, J = 16.8 Hz, 1H, one proton of 

diastereotopic protons in CH2), 3.90-4.10 (m, 2H, 

diastereotopic protons in OCH2), 4.84 (s, 1H, CH), 7.13-

7.18 (m, 2H, Harom), 7.23-7.28 (m, 1H, Harom), 7.31 (s, 1H, 

Harom), 9.13 (s br., 1H, NH); FT-IR (cm-1): υ 3277, 3208, 

3075, 2959, 1702, 1643, 1606, 1488, 1381, 1281, 1214, 

1153, 1110, 1073, 1029, 879, 771, 738.   

 

Ethyl 4-(4-methylphenyl)-2,7,7-trimethyl-5-oxo-

1,4,5,6,7,8-hexahydroquinoline-3-carboxylate 5i (Table 

2, entry 9) 
1H NMR (ppm):  0.85 (s, 3H, CH3), 1.00 (s, 3H, 

CH3), 1.13 (t, 3H, J = 7.2 Hz, CH3), 1.96 (d, J = 16.2 Hz, 

1H, one proton of diastereotopic protons in CH2), 2.12-

2.21 (m, 4H, a doublet for one proton of diastereotopic 

protons in CH2 ovelapped with a singlet for CH3), 2.27 (s, 

3H, CH3 overlapped with one proton of diastereotopic 

protons in CH2), 2.28 (d, J = 16.8 Hz, 1H, one proton of 

diastereotopic protons in CH2 overlapped with CH3), 2.41 

(d, J = 16.8 Hz, 1H, one proton of diastereotopic protons 

in CH2), 3.96 (q, J = 7.2 Hz, 2H, OCH2), 4.81 (s, 1H, 

CH), 6.97 (d, J = 7.8 Hz, 2H, Harom), 7.03 (d, J = 8.1 Hz, 

2H, Harom), 9.01 (s br., 1H, NH); FT-IR (cm-1): υ 3276, 

3206, 3078, 2960, 1702, 1647, 1606, 1492, 1381, 1281, 

1216, 1154, 1108, 1072, 1031, 849, 822.   

 

Ethyl 4-(4-hydroxyphenyl)-2,7,7-trimethyl-5-oxo-

1,4,5,6,7,8-hexahydroquinoline-3-carboxylate 5k (Table 

2, entry 11) 
1H NMR (ppm):  0.85 (s, 3H, CH3), 0.99 (s, 3H, 

CH3), 1.13 (t, 3H, J = 7.2 Hz, CH3), 1.97 (d, J = 15.9 Hz, 

1H, one proton of diastereotopic protons in CH2), 2.15 (d, 

J = 16.2 Hz, 1H, one proton of diastereotopic protons in 

CH2), 2.26 (d, J = 16.8 Hz, 1H, one proton of 

diastereotopic protons in CH2 overlapped with CH3), 2.27 

(s, 3H, CH3 overlapped with one proton of diastereotopic 

protons in CH2), 2.39 (d, J = 16.8 Hz, 1H, one proton of 

diastereotopic protons in CH2), 3.92-4.02 (m, 2H, 

diastereotopic protons in OCH2), 4.76 (s, 1H, CH), 6.57 

(d, J = 8.7 Hz, 2H, Harom), 6.95 (d, J = 8.7 Hz, 2H, Harom), 

8.96 (s br., 1H, NH or OH), 9.03 (s br., 1H, OH or NH); 

FT-IR (cm-1): υ 3459, 3277, 3201, 3073, 2959, 1683, 

1607, 1488, 1381, 1283, 1218, 1167, 1109, 1072, 1028, 

852, 769.   

 

RESULTS AND DISCUSSION  

Preparation and characterization of catalyst 

At first, CuFe2O4 MNPs were prepared by chemical 

co-precipitation method using Cu(NO3)2·3H2O and 

Fe(NO3)3·9H2O as precursors [57]. Sonication of these 

MNPs in a mixture of aqueous ammonia, tetraethyl 

orthosilicate (TEOS) and ethanol via sol-gel method [58] 

gave CuFe2O4@SiO2 MNPs which were allowed to react 

with (3-chloropropyl)triethoxysilane and then with  

an excessive amount of 3,5-dimethyl-1H-pyrazole to give 

CuFe2O4@SiO2@C3-Pyrazole MNPs. The excess of  

3,5-dimethyl-1H-pyrazole traps the HCl released in the 

reaction. The reaction of later MNPs with 1,4-butane 

sultone followed by interaction with H3PW gave the final 

novel functionalized pyrazolium-based IL containing a 

phosphotungstic counter-anion H2PW immobilized  

on CuFe2O4@SiO2 MNPs which is denoted  

as CuFe2O4@SiO2@C3-Pyrazole-C4SO3-H2PW (Scheme 1).  

The final prepared MNPs were characterized using 

different techniques including SEM, TEM, EDX analysis, 

ICP-OES, FT-IR spectroscopy, and VSM.   

The surface morphology of the CuFe2O4@SiO2@C3-

Pyrazole-C4SO3-H2PW nanocatalyst was characterized 

using SEM analysis (Fig. 1b) and compared with 

CuFe2O4 MNPs (Fig. 1a). The SEM images exhibit that 

the particles have nearly spherical (between spherical and 

multifaceted cuboid) shapes with slight agglomeration 

due to magnetic dipole interactions between particles. 

Furthermore, the TEM image of the nanocatalyst 

shown in Fig. 2 confirms the almost spherical shape  

of the nanoparticles with diameters of less than 25 nm 

with a narrow size distribution. 
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Fig. 1: The SEM images of (a) CuFe2O4 MNPs and (b) CuFe2O4@SiO2@C3-Pyrazole-C4SO3-H2PW MNPs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2: The TEM image of CuFe2O4@SiO2@C3-Pyrazole-

C4SO3-H2PW MNPs. 

 

The EDX spectrum depicted in Fig. 3 clearly shows 

the presence of copper (Cu), iron (Fe), oxygen (O), 

silicon (Si), nitrogen (N), and sulfur (S) elements in the 

catalyst with no extra peak related to other impurities 

confirming the successful immobilization of H2PW-

containing IL on CuFe2O4@SiO2 MNPs. 

Based on ICP‐OES, the amount of W incorporated 

into the CuFe2O4@SiO2@C3-Pyrazole-C4SO3-H2PW 

MNPs is 2.427%, which is another confirmation  

for immobilization of H2PW-containing IL onto 

CuFe2O4@SiO2 MNPs. 

The FT-IR spectra of CuFe2O4@SiO2, 

CuFe2O4@SiO2@C3-Pyrazole, and CuFe2O4@SiO2@C3-

Pyrazole-C4SO3-H2PW MNPs are also compared in Fig. 4. 

A strong band at around 582-590 cm-1 appeared in all the 

MNPs (a, b, and c) can be assigned to the stretching 

vibration of Fe-O bond. The additional characteristic 

peaks in Fig. 4c at 800-1185 cm-1 (overlapped SO2, PW 

and Si-O-Si stretching vibration bands), at 1400-1650 cm-1 

as well as around 3000 cm-1 (attributed to the pyrazole 

and C-H stretching vibrations, respectively), confirm 

successful preparation of CuFe2O4@SiO2@C3-Pyrazole-

C4SO3-H2PW MNPs.  

Finally, the magnetic property of CuFe2O4@SiO2@ 

C3-Pyrazole-C4SO3-H2PW nanoparticles was studied 

using VSM at ambient temperature in an applied 

magnetic field, with the field sweeping from -10000 to 

+10,000 Oersted (Oe), and compared with bare CuFe2O4 

(Fig. 5). It could be seen that the hysteresis loops in both 

MNPs are irreversible confirming the ferromagnetic 

nature of them. Although, due to the non-magnetic silica 

shell and immobilized IL, the saturation magnetization 

(Ms) of the CuFe2O4@SiO2@C3-Pyrazole-C4SO3-H2PW 

nanoparticles has decreased from 34.12 emu/g for the 

bare CuFe2O4 nanoparticles to 30.37 emu/g, however, 

they still could be efficiently separated from the solution  

with a permanent magnet. While both CuFe2O4 and 

CuFe2O4@SiO2@C3-Pyrazole-C4SO3-H2PW MNPs have 

the same remanent magnetization (Mr) of 10.49,  

the coercivity (Hc) values of them were found to be 240 

and 421 Oe, respectively. 

 
Catalytic application of CuFe2O4@SiO2@C3-Pyrazol-

C4SO3-H2PW MNPs  

The performance of CuFe2O4@SiO2@C3-Pyrazol-

C4SO3-H2PW as catalyst was tested in the synthesis of 

polyhydroquinolines. The chosen model reaction between 

dimedone 1 (1 mmol), 4-chlorobenzaldehyde 2d (1 mmol), 

ammonium acetate 3 (1 mmol), and ethyl acetoacetate  

4 (1 mmol) was tested in various reaction conditions 
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Fig. 3: EDX analysis of CuFe2O4@SiO2@C3-Pyrazole-C4SO3-

H2PW MNPs. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4: FT-IR spectra of (a) CuFe2O4@SiO2 MNPs, (b) 

CuFe2O4@SiO2@C3-Pyrazole MNPs, and (c) 

CuFe2O4@SiO2@C3-Pyrazole-C4SO3-H2PW MNPs. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5: Hysteresis loops of CuFe2O4 (black curve (a)) and 

CuFe2O4@SiO2@C3-Pyrazole-C4SO3-H2PW MNPs (red curve (b)) 

at room temperature. 

to investigate the optimized conditions. Because of 

several advantages of solvent-free conditions in chemical 

reactions such as simplification of work-ups, formation 

 of cleaner products, environmental compatibility,  

and reduction of by-products, we firstly decided  

to investigate the efficiency of CuFe2O4@SiO2@C3-

Pyrazol-C4SO3-H2PW in the model reaction under 

solvent-free conditions in different temperatures  

and employing different catalyst loadings. The results  

are summarized in Table 1. Our investigation clarified 

that CuFe2O4@SiO2@C3-Pyrazol-C4SO3-H2PW is  

a suitable catalyst for the synthesis of compound 5d 

under solvent-free conditions. The best result was 

conducted at 90 °C in the presence of 20 mg of 

CuFe2O4@SiO2@C3-Pyrazol-C4SO3-H2PW (entry 6).  

The higher amount of the catalyst and temperature 

slightly reduce the yield of the product (entries 9-11). To 

prove the necessity of the catalyst, the model reaction 

was also performed in the absence of the catalyst at 90 

°C. No significant yield of 5d was obtained after 120 min 

(entry 1), indicating the importance of the catalyst in the 

reaction. Subsequently, our investigation showed that the 

compound 5d can be obtained in good to high yield  

in different solvents including H2O, EtOH, EtOH/H2O, 

MeOH, CH3CN, CHCl3, and DMF. Although there is no 

significant difference between the use of EtOH, MeOH, 

and DMF as a solvent and also solvent-free conditions, 

however, because of the above-mentioned advantages, 

solvent-free conditions were selected in all subsequent 

reactions.  

Furthermore, to show that whether the catalytic 

activity of CuFe2O4@SiO2@C3-Pyrazol-C4SO3-H2PW  

is due to the ionic liquid or the presence of the 

phosphotungstic acid, the model reaction was also tested 

using CuFe2O4@SiO2@C3-Pyrazol-C4SO3. As depicted 

(Table 1, entry 19), CuFe2O4@SiO2@C3-Pyrazol-C4SO3-

H2PW proved to be a better catalyst than 

CuFe2O4@SiO2@C3-Pyrazol-C4SO3 in terms of reaction 

time and yield. We, therefore, believe that the catalytic 

activity of CuFe2O4@SiO2@C3-Pyrazol-C4SO3-H2PW  

is more due to the presence of phosphotungstic acid. 

Having successfully optimized the experimental 

conditions, we next explored the scope of the reaction. 

Therefore, a wide range of ortho-, meta- and para-

substituted aromatic aldehydes undergo one-pot 

multicomponent reaction with dimedone, ammonium 
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Table 1: Optimization of reaction parameters for the synthesis of compound 5d catalyzed by  

CuFe2O4@SiO2@C3-Pyrazole-C4SO3-H2PW MNPsa. 

Entry Catalystb (mg) Solvent T (°C) Time (min) Isolated Yield (%) 

1 ----- ----- 90 120 Trace 

2 A (10) ----- 80 5 73 

3 A (10) ----- 90 3 83 

4 A (10) ----- 100 3 82 

5 A (20) ----- 80 3 80 

6 A (20) ----- 90 2 90 

7 A (20) ----- 100 3 86 

8 A (40) ----- 80 3 78 

9 A (40) ----- 90 2 84 

10 A (40) ----- 100 3 83 

11 A (60) ----- 100 3 82 

12 A (20) H2O Reflux 3 69 

13 A (20) EtOH Reflux 3 86 

14 A (20) EtOH/H2O Reflux 3 80 

15 A (20) MeOH Reflux 3 86 

16 A (20) CH3CN Reflux 6 78 

17 A (20) CHCl3 Reflux 4 80 

18 A (20) DMF Reflux 3 87 

19 B (20) ----- 90 25 54 

a) Reaction conditions: dimedone 1 (1 mmol), 4-chlorobenzaldehyde 2d (1 mmol), ammonium acetate 3 (1 mmol), and ethyl acetoacetate 4 (1 mmol) 

b) A = CuFe2O4@SiO2@C3-Pyrazole-C4SO3-H2PW, B = CuFe2O4@SiO2@C3-Pyrazole-C4SO3 

 

acetate, and ethyl acetoacetate under optimized 

conditions to afford polyhydroquinoline derivatives 

(Table 2). As shown in Table 2, all electron-rich as well 

as electron-poor aromatic aldehydes reacted successfully 

and gave the products in high yields within short reaction 

time. The type of substituent on the aromatic aldehydes 

had no significant effect on the reaction time and yield. 

These results indicate that the CuFe2O4@SiO2@C3-

Pyrazol-C4SO3-H2PW acts as a highly active catalyst  

in this methodology.   

To evaluate the overall utility of the current 

methodology, the results were compared with those using 

other catalysts reported for the synthesis of 

polyhydroquinolines. As shown in Table 3, the current 

procedure that involved nano CuFe2O4@SiO2@C3-

Pyrazole-C4SO3-H2PW as the catalyst gave high yields  

of the products in shorter reaction time than the other 

methods. Magnetic recyclability of our catalyst makes  

it superior over some of the other reported methods. 

Because of the green chemistry, the catalyst  

was further explored for the reusability using the reaction 

of dimedone, 2-chlorobenzaldehyde, ammonium acetate, 

and ethyl acetoacetate for the synthesis of compound 5b 

under the aforementioned optimized reaction conditions. 

Upon completion of the first run, hot ethanol was added 

and the catalyst was collected by simple magnetic 

decantation (Fig. 6). The recycled catalyst was washed 

with ethanol, dried under vacuum at 60 °C for 1 h, and 
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Table 2: Synthesis of polyhydroquinolines 5a-k catalyzed by CuFe2O4@SiO2@C3-Pyrazole-C4SO3-H2PW MNPs. 

Entry Ar Product Time (min) Isolated yield (%) 

m.p. (ºC) 

Found Reported 

1 C6H5 5a 5 98 216-219 220-224 [33] 

2 2-ClC6H4 5b 2 96 208-210 208-210 [34] 

3 3-ClC6H4 5c 1 82 229-231 231-234 [34] 

4 4-ClC6H4 5d 2 90 246-248 246-250 [33] 

5 3-BrC6H4 5e 2 87 229-230 235 [34] 

6 4-FC6H4 5f 4 87 188-190 184-186 [37] 

7 2-O2NC6H4 5g 2 92 216-218 210-215 [34] 

8 3-O2NC6H4 5h 3 98 184-186 181-183 [27] 

9 4-MeC6H4 5i 2 89 262-264 261-262 [34] 

10 4-MeOC6H4 5j 4 84 259-261 257-259 [37] 

11 4-HOC6H4 5k 5 92 239-240 239-241 [27] 

Reaction conditions: dimedone 1 (2 mmol), an aromatic aldehyde 2a-k (1 mmol), ammonium acetate 3 (1 mmol), ethyl acetoacetate 4 (1 mmol), 

CuFe2O4@SiO2@C3-Pyrazole-C4SO3-H2PW MNPs (20 mg), 90 ºC, solvent-free. 

 

Table 3: Comparison of the efficiencies of different catalysts for the synthesis of polyhydroquinolines. 

Catalyst Solvent T (ºC) Catalyst amount* (mg) Time (min) Yield (%) Ref. 

V-TiO2 NPs ---- 80 3 10-20 65-94 [23] 

NS-[C4(DABCO-SO3H)2].4Cl ---- 100 10 2-50 80-98 [24] 

carbon-based solid acid ---- 90 20 18-35 87-95 [25] 

BiFeO3 MNPs ---- 110 20 10-30 70-95 [26] 

[TBA]2[W6O19] ---- 110 110 20-40 67-95 [27] 

β-Cyclodextrin–polyurethane polymer ---- 80 150 10-30 84-93 [28] 

1,3-Dibromo-5,5-Dimethylhydantoin ---- 130 29 25-50 80-96 [29] 

SBA-Pr-SO3H ---- 90 50 10-18 75-90 [30] 

PPA-SiO2 ---- 80 30 40-60 85-92 [31] 

[pyridine-SO3H]Cl ---- 110 20 25-35 84-93 [32] 

Nafion-H® 
PEG 400-

water 
50 30 90-96 88-96 [33] 

TiO2 NPs EtOH reflux 8 105-240 50-93 [34] 

HClO4/Zr-MCM-41 EtOH reflux 10 10-60 70-95 [35] 

Fe3O4@B-MCM-41 EtOH reflux 50 15-130 75-92 [36] 

CuFe2O4@SiO2@C3-Pyrazole-C4SO3-
H2PW MNPs 

---- 90 20 1-5 84-98 
This 
work 

*The Catalyst amount is for 1 mmol of dimedone 
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Fig. 2: The reaction mixture in the synthesis of 5b after 

adding hot ethanol in the presence of a magnetic field. 

 

then used in the next run. The catalyst could be used  

at least four times with only a slight reduction in activity 

(96, 94, 92, and 89 % yields for first to fourth use, 

respectively) which demonstrates the practical reusability 

of this catalyst. 

 

CONCLUSIONS 

A novel magnetically retrievable heterogeneous 

organic-inorganic nanocatalyst, denoted as 

CuFe2O4@SiO2@C3-Pyrazol-C4SO3-H2PW, was 

successfully prepared by immobilization of H2PW-

containing functionalized pyrazolium-based IL on 

CuFe2O4@SiO2 MNPs, and characterized using SEM, 

TEM, EDX analysis, FT-IR spectroscopy, and VSM.  

The average diameter of the newly prepared spherical shape 

ferromagnetic nanoparticles is found to be approximately less 

than 25 nm. The catalytic activity of the new MNPs  

as catalyst was also evaluated in the synthesis of 

polyhydroquinolines by the one-pot reaction of dimedone,  

an aromatic aldehyde, ammonium acetate, and ethyl 

acetoacetate. The results showed a significant catalytic 

performance of the catalyst for this transformation under 

solvent-free conditions, giving high yields of the products 

over short reaction time. Also, the catalyst is readily 

recovered by simple magnetic decantation and can be 

reused for subsequent reactions with no significant loss of 

its activity. Further applications of this new catalyst  

for other reactions, systems are currently under investigation. 
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