Investigation of the Specific Ion Interactions and Determining Protonation Constant of 3,5-Dihydroxy-2-(3,4,5-trihydroxybenzoyl)oxy-6-[(3,4,5-trihydroxybenzoyl)oxymethyl] oxan-4-yl] 3,4,5-trihydroxybenzoate at Different Ionic Strength

Document Type: Research Article

Authors

Department of Chemistry, Ardabil Branch, Islamic Azad University, Ardabil, I.R. IRAN

Abstract

In this research, the protonation constant value of tannic acid was determined at 25 °C and different ionic strengths (0.1 to 0.7 mol/dm3 NaCl) using potentiometric titration technique. The dependence of protonation constant on ionic strength was modeled and discussed by a Debye-Hückel type equation. Then, based on the obtained data from experiments, the minimizing Sum of Squares Error (SSE) was done by Microsoft's Excel solver program and the most suitable model was chosen. After optimization, the protonation constant of tannic acid at different ionic strengths was calculated and curves of log Kcal and log Kexp were compared. Finally, Daniele constants of C and D were measured and the Specific Ion interaction Theory (SIT) was assessed for this weak acid. The obtained results show that the protonation constants of tannic acid decrease with increasing ionic strength.

Keywords

Main Subjects


1] Chavez-Gonzalez M.L., Contreras-Esquivel J.C., Prado-Barragan L.A., Rodriguez R., Aguilera-Carbo A.F., Rodriguez L.V., Aguilar C.N., Microbial and Enzymatic Hydrolysis of Tannic Acid: Influence of Substrate Chemical Quality, Chem. Pap., 66(3): 171-177 (2012). 

[2] Go J., Kim J.E., Koh E.K., Song S.H., Seung J.E., Park C.K., Lee H.A., Kim H.S., Lee J.H., An B.S., Yang S.Y., Lim Y., Hwang D.Y., Hepatotoxicity and Nephrotoxicity of Gallotannin-Enriched Extract Isolated from Galla Rhois in ICR Mice, Lab Anim Res., 31(3): 101-110 (2015).

[3] Isenburg J.C., Simionescu D.T., Vyavahare N.R., Tannic Acid Treatment Enhances Biostability and Reduces Calcification of Glutaraldehyde Fixed Aortic Wall, Biomaterials., 26(11): 1237-1245 (2005).

[4] Sivaraman S.K., Elango I., Kumar S., Santhanam V., A Green Protocol for Room Temperature Synthesis of Silver Nanoparticles in Seconds, Curr. Sci., 97(7): 1055-1059 (2009).

[5] Cruz B.H., Diaz-Cruz J.M., Arino C., Esteban M., Heavy Metal Binding by Tannic Acid: A Voltammetric Study, Electroanalysis,12(14): 1130-1137 (2000).

[6] Bors W., Foo L.Y., Hertkorn N., Michel C., Stettmaier K., Chemical Studies of Proanthocyanidins and Hydrolyzable Tannins, Antioxid Redox Sign., 3(6): 995-1008 (2001).

[7] Liu J., Qin G., Raveendran P., Ikushima Y., Facile Green Synthesis, Characterization, and Catalytic Function of β‐D‐Glucose‐Stabilized Au Nanocrystals, Chem. Eur. J.,12(6): 2131-2138 (2006).

[8] Tian X., Wang W., Cao G., A Facile Aqueous-Phase Route for the Synthesis of Silver Nanoplates, Mater. Lett., 61(1): 130-133 (2007).

[9] Aromal S.A., Philip D., Facile One-Pot Synthesis of Gold Nanoparticles Using Tannic Acid and Its Application in Catalysis, Physica, E, Low-Dimens. Syst. Nanostruct., 44(7-8): 1692-1696 (2012).

[10] Losso J.N., Bansode R.R., Trappey A., Bawadi H.A., Truax R., In Vitro Anti-Proliferative Activities of Ellagic Acid, J Nutr Biochem., 15(11): 672-678 (2004).

[11] Bawadi H.A., Bansode R.R., Trappey A., Truax R.E., Losso J.N., Inhibition of Caco-2 Colon, MCF-7 and Hs578T Breast, and DU 145 Prostatic Cancer Cell Proliferation by Water-Soluble Black Bean Condensed Tannins, Cancer. Lett., 218(2): 153-162 (2005).

[12] Desantis C., Siegel R., Bandi P., Jemal A., Breast cancer statistics, 2011, CA Cancer J Clin., 61(6): 408-418 (2011).

[17] Gharib F., Farajtabar A., Interaction of Dioxouranium(VI) Ion with Serine at Different Ionic Strengths, J. Mol. Liq.,135(1-3): 27-31 (2007).

[18] Mehdizadeh S., Shakibazadeh R., Sharifi S., Gharib F., Protonation Constants of Glycylisoleucine at Different Ionic Strengths and Various Ionic Media, J. Phys. Theor. Chem., 3(2): 73-80 (2006).

[19] Reichardt C., Welton T., ''Solvents and Solvent Effects in Organic Chemistry'',4rd ed., John Wiley and Sons, Inc., New York, (2010).

[20] Faraji M., Farajtabar A., Gharib F., Ionic Strength Effect on the Deprotonation of Para-Sulfonatocalix[4]Arene, J. Serb. Chem. Soc.,78(5): 681-688 (2013).

[21] Farajtabar A., Gharib F., Solvent Effect on Protonation Constants of Salicylic Acid in Mixed Aqueous Organic Solutions of DMSO, Monatsh. Chem.,141(4): 381-386 (2010).

[22] Scatchard G., Concentrated Solutions of Strong Electrolytes, Chem. Rev.,19(3): 309-327 (1936).

[23] Ciavatta L., The Specific Interaction Theory in Evaluating Ionic Equilibria, Ann. Chim. Rome., 70: 551-567 (1980).

[24] Faraji M., Farajtabar A., Gharib F., Ghasemnejad-Borsa H., Deprotonation of Salicylic Acid and 5-Nitrosalicylic Acid in Aqueous Solutions of Ethanol, J. Serb. Chem. Soc., 76(11): 1455-1463 (2011).

[25] Brönsted J.N., Studies on Solubility. Iv. The Principle of the Specific Interaction of Ions, J Am Chem. Soc.,44(5): 877-898 (1922).

[26] Soleimani F., Karimi R., Gharib F., Thermodynamic Studies on Protonation Constant of Acyclovir at Different Ionic Strengths, J. Solution Chem.,45(6): 920-931 (2016).

[29] Pitzer K.S., ''Activity coefficients in electrolyte solutions'', 2nd ed., CRC Press, Boca Raton, Florida, (1991).

[30] Khorrami S.A., Gharib F., Zare K., Aghai H., Determination of the Stability Constant of Vanadium (V) with Aline, Iran. J. Chem. Chem. Eng. (IJCCE), 11(2): 19-24 (1992).