BP-ANN Approach for Modeling Cd(II) Bio-Sorption from Aqueous Solutions Using Cajanus cajan Husk

Document Type : Research Article

Authors

1 Department of Chemical Engineering, National Institute of Technology, Rourkela - 769008, Odisha, INDIA

2 Department of Ceramic and Cement Technology, PDA College of Engineering, Gulbarga - 585102, Karnataka, INDIA

3 Department of Civil Engineering, B. K. Institute of Technology, Bhalki, Bidar - 585328, Karnataka, INDIA

4 Department of Chemistry, National Institute of Technology, Rourkela - 769008, Odisha, INDIA

Abstract

This work aims at the modeling of bio-sorption of cadmium(II) onto physically and chemically activated Cajanus cajan (Pigeon pea) husks. Experimental data obtained were fitted to a number of isotherm and kinetic models, and the results interpreted. The monolayer Cd(II) bio-sorption capacities of the husk were found to considerably increase by 2.82 times due to chemical activation, for bio-sorption from a solution containing an initial Cd(II) concentration of 100 mg/L and by about 1.78 times for a solution containing an initial Cd(II) concentration of 150 mg/L. Further, the BackPropagation Artificial Neural Network (BP-ANN) was applied to understand the accuracy and prediction of isotherm and kinetic data. The tangent sigmoid transfer function was used at the input to hidden layer whereas a linear function was used at output layer. The isotherm and kinetic data were distributed into training (65%) and testing (35%) phase. The training, testing, and prediction by BP-ANN were found to be adequate, with an absolute relative percentage error of 2.1827 and correlation coefficient R2of 0.9967 and 0.9863 at prediction for isotherm and kinetic studies, respectively. Comparison of BP-ANN and experimental results indicated that the prediction model is capable of predicting the bio-sorption effectiveness with good accuracy.

Keywords

Main Subjects


[1] Pino G.H., Souza de Mesquita L.M., Torem M.L., Pinto G.A.S., Biosorption of Cadmium by Green Coconut Shell Powder, Miner. Eng., 19: 380–387 (2006).
[2] Cay S.C., Uyanık A., Ozasık A., Single and Binary Component Adsorption of Copper(II) and Cadmium(II) from Aqueous Solutions Using Tea-Industry Waste, Sep. Purif. Technol., 38(3): 273–280 (2004).
[3] Wang F.Y., Wang H., Ma J.W., Adsorption of Cadmium (II) Ions from Aqueous Solution by a New Low-Cost Adsorbent—Bamboo Charcoal, J. Hazard. Mater., 177: 300–306 (2010).
[4] Padma V., Padmavathy V., Dhingra S.C., Kinetics of Biosorption of Cadmium on Bakers Yeast, Bioresour. Technol., 89: 281-287 (2003).
[5] Tobin J.M., Roux J.C., Mucorbiosorbent for Chromium Removal from Tanning Effluents, Water Res., 32: 1407–141 (1998).
[6] Dakiky M., Khamis M., Manassra A., Mer’eb M., Selective Adsorption of Chromium(VI) in Industrial Wastewater Using Low-Cost Abundantly Available Adsorbents, Adv. Environ. Res., 6: 533-540 (2002).
[9] Savic I.M., Stojiljkovic S.T., Savic I.M., Stojanovic S.B., Moder K., Modeling and Optimization of Fe(III) Adsorption from Water Using Bentonite Clay: Comparison of Central Composite Design and Artificial Neural Network, Chem. Eng. Technol., 35: 2007–2014 (2012).
[10] Saha D., Bhowal A., Dutta S., Artificial Neural Network Modelling of Fixed Bed Biosorption Using Radial Basis Approach, Heat Mass Transfer, 46: 431–436 (2010).
[11] Mandal S., Mahapatra S.S., Sahu M.K., Patel R.K., Artificial Neural Network Modeling of As(III) Removal from Water by Novel Hybrid Material, Process Saf. Environ. Prot., 93:249-264 (2014).
[14] Ho Y. S., Selection of Optimum Sorption Isotherm, Carbon, 42: 2115-2116 (2004a).
[15] Freundlich H.M.F., Over the Adsorption in Solution, J. Phys. Chem., 57:385–470 (1906).
[16] Langmuir I., The Adsorption of Gases on Plane Surfaces of Glass, Mica and Platinum, J. Am. Chem. Soc., 40: 1361–1403 (1918).
[17] Hall K.R., Eagleton L.C., Acrivos A., Vermeulen T., Pore- and Solid-Diffusion Kinetics in Fixed-Bed Adsorption under Constant-Pattern Conditions, Ind. Eng. Chem. Fundam., 5: 212–223 (1966).
[18] Argun M.E., Dursun S., Karatas M., Guru M., Activation of Pine Cone Using Fenton Oxidation for Cd(II) and Pb(II) Removal, Bioresour. Technol., 99: 8691-8698 (2008).
[19] Sharma A., Bhattacharyya K.G., Azadirachtaindica(Neem) Leaf Powder as a Biosorbent for Removal of Cd(II) From Aqueous Medium, J. Hazard. Mater., B125: 102–112 (2005).
[20] Bunluesin S., Kruatrachue M., Pokethitiyook P., Upatham S., Lanza G.R., Batch and Continuous Packed Column Studies of Cadmium Biosorption by Hydrillaverticillata Biomass, Journal of Bioscience and Bio Engineering, 103(6):509–513 (2007).
[21] Nouri L., Ghodbane I., Hamdaoui O., Chiha M., Batch Sorption Dynamics and Equilibrium for
the Removal of Cadmium Ions from Aqueous Phase Using Wheat Bran
, J. Hazard. Mater., 149: 115-125 (2007).
[22] Barka N., Abdennouri M., Boussaoud A., Makhfouk M.E.L., Biosorption Characteristics of Cadmium(II) onto Scolymushispanicus L. as Low-Cost Natural Biosorbent, Desalination, 258: 66–71 (2010).
[23] Panda G.C., Das S.K., Guha A.K., Biosorption of Cadmium and Nickel by Functionalized Husk of Lathyrussativus, Colloids Surf., B: Biointerfaces, 62: 173-179 (2008).
[24] Vimala R., Das N., Biosorption of Cadmium (II) and Lead (II) From Aqueous Solutions Using Mushrooms: A Comparative Study, J. Hazard. Mater., 168: 376–382 (2009).
[25] Mashitah M.D., Azila Y.Y., Bhatia S., Biosorption of Cadmium (II) Ions by Immobilized Cells of Pycnoporussanguineus From Aqueous Solution, Bioresour. Technol., 99: 4742-4748 (2008).
[26] Jin-ming L.U.O., Xiao X.I.A.O., Sheng-lian L.U.O., Biosorption of Cadmium(II) from Aqueous Solutions by Industrial Fungus Rhizopuscohnii, Trans. Nonferrous Met. Soc. China, 20: 1104-1111 (2010).
[27] Munagapati V.S., Yarramuthi V., Nadavala S.K., Alla S.R., Abburi K., Biosorption of Cu(II), Cd(II) and Pb(II) by Acacia Leucocephala Bark Powder: Kinetics, Equilibrium and Thermodynamics, Chem. Eng. J., 157: 357–365 (2010).
[29] Chakravarty P., Sarma N.S., Sarma H.P., Biosorption of Cadmium(II) From Aqueous Solution Using Heartwood Powder of Areca Catechu, Chem. Eng. J., 162: 949–955 (2010).
[30] Fan T., Liu Y., Feng B., Zeng G., Yang C., Zhou M., Zhou H., Tan Z., Wang X., Biosorption of Cadmium(II), Zinc(II) and Lead(II) by Penicilliumsimplicissimum: Isotherms, Kinetics and Thermodynamics, J. Hazard. Mater., 160: 655-661 (2008).
[31] Selatnia A., Bakhti M.Z., Madani A., Kertous L., Mansouri Y., Biosorption of Cd2+ From Aqueous Solution by a NaOH-Treated Bacterial Dead Streptomyces Rimosus Biomass, Hydrometallurgy, 75:11-24 (2004).
[33] Yan G., Viraraghavan T., Heavy-Metal Removal From Aqueous Solution by Fungus Mucorrouxii, Water Res., 37: 4486-4496 (2003).
[34] Sari A., Tuzen M., Biosorption of Pb(II) and Cd(II) from Aqueous Solution Using Green Alga (Ulvalactuca) Biomass, J. Hazard. Mater., 152(1): 302–308 (2008).
[35] Miretzky P., Munoz C., Carrillo-Chavez A., Cd (II) Removal from Aqueous Solution by Eleocharisacicularis Biomass, Equilibrium and Kinetic Studies, Bioresour. Technol., 101: 2637–2642 (2010).
[36] Ozdemir G., Ceyhan N., Ozturk T., Akirmark F., Cosar T., Biosorption of Chromium(VI), Cadmium(II) and Copper(II) by Pantoea sp. TEM18, Chem. Eng. J., 102: 249–253 (2004).
[37] Anirudhan T.S., Radhakrishnan P.G., Kinetic and Equilibrium Modeling of Cadmium(II) Ions Sorption onto Polymerized Tamarind Fruit Shell, Desalination, 249: 1298-1307 (2009).
[38] Tempkin M.I., Pyzhev V., Kinetics of Ammonia Synthesis on Promoted Iron Catalyst, Acta Phys. Chim. USSR, 12: 327–356 (1940).
[41] Halsey G., Physical Adsorption on Non-Uniform Surfaces, J. Chem. Phys., 16:931-937 (1948). 
[43] Dalal R.C., Desorption of Phosphate by Anion Exchange Resin, Commun. Soil Sci. Plant Anal.,5: 531-538 (1974).
[44] Eligwe C.A., Okolue N.B., Adsorption of Iron(II) by a Nigerian Brown Coa, Fuel, 73: 569-572 (1994).
[45] Sparks D.L., “Kinetics of Soil Chemical Processes”, 1st ed., Academic Press, New York, USA (1989).
[46] Lagergren S., Zur Theorie Der Sogenannten Adsorption Gelöster Stoffe, Kungliga. Svenska Vetenskapsakademiens, 24(2): 1-39 (1898).
[47] Levenspiel O., “Chemical Reaction Engineering”, third ed., Wiley India Pvt. Ltd. New Delhi (2004).
[48] Ho Y.S., Review of Second-Order Models for Adsorption Systems, J. Hazard. Mater., 136: 681-689 (2006).
[49] Perez Marin A.B., Aguilar M.I., Meseguer V.F., Ortuno J.F., Saez J., Llorens M., Biosorption of Chromium (III) by Orange (Citrus cinensis) Waste: Batch and Continuous Studies, Chem. Eng. J., 155:199-206 (2009).
[50] Ozacar M., Sengil I.A., A Kinetic Study of Metal Complex Dye Adsorption onto Pine Sawdust, Process Biochem., 40: 565-572 (2005).
[51] Cheung C.W., Porter J.F., McKay G., Sorption Kinetic Analysis for the Removal of Cadmium Ions from Effluents Using Bone Char”, Water Res., 35(3): 605-612 (2001).
[52] Ritchie A.G., Alternative to the Elovich Equation for the Kinetics of Adsorption of Gases on Solids,
J. Chem. Soc., Faraday Trans., I73: 1650-1653 (1977).
[53] Weber W.J., Morris J.C., Kinetics of Adsorption on Carbon from Solution, Journal of Sanitary Engineering Division: American Society of Civil Engineers, 89(2): 31-60 (1963).
[54] Bingol D., Hercan M., Elevli S., Kılıç E., Comparison of the Results of Response Surface Methodology and Artificial Neural Network for the Biosorption of Lead Using Black Cumin, Bioresour. Technol., 112: 111-115 (2012).
[55] Turan N.G., Mesci B., Ozgonenel O., Artificial Neural Network (ANN) Approach for Modeling Zn(II) Adsorption From Leachate Using a New Biosorbent, Chem. Eng. J., 173(1): 98-105 (2011).
[56] Mitra T., Singha B., Bar N., Das S.K., Removal of Pb(II) Ions From Aqueous Solution Using Water Hyacinth Root by Fixed-bed Column and ANN Modeling, J. Hazard. Mater., 273: 94-103 (2014).
[57] Singha B., Bar N., Das S.K., The Use of Artificial Neural Network (ANN) for Modeling of Pb(II) Adsorption in Batch Process, J. Mol. Liq., 211: 228-232 (2015).
[58] Ghaedi M., Ghaedi A.M., Ansari A., Mohammadi F., Vafaei A., Artificial Neural Network and Particle Swarm Optimization for Removal of Methyl Orange by Gold Nano Particles Loaded on Activated Carbon and Tamarisk, SpectrochimicaActa Part A: Molecular and Biomolecular Spectroscopy, 132: 639-654 (2014).
[59] Prakash N., Manikandan S.A., Govindarajan L., Vijayagopal V., Prediction of Biosorption Efficiency for the Removal of Copper(II) Using Artificial Neural Networks, J. Hazard. Mater., 152(3): 1268-1275 (2008).
[60] Fagundes-Klen M.R., Ferri P., Martins T.D., Tavares C.R.G., Silva E.A., Equilibrium Study of the Binary Mixture of Cadmium–Zinc Ions Biosorption by the Sargassumfilipendula Species Using Adsorption Isotherms Models and Neural Network, Biochem. Eng. J., 34(2): 136-146 (2007).