Competitive Adsorption of Cu, Ni, Pb, and Cd from Aqueous Solution Onto Fly Ash-Based Linde F(K) Zeolite

Document Type: Research Article


1 Department of City Science, Jiangsu City Vocational College, Nanjing 210036, CHINA

2 School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, CHINA


The reaction of fly ash with a KOH solution was used to synthesize Linde F(K) zeolite, following which Fourier transform infrared spectroscopy were used to characterize the crystalline material. The competitive adsorption of Cu, Ni, Pb, and Cd onto this zeolite was subsequently studied in quaternary solution systems. The results show that the metal removal rates gradually increase with increases in the pH of the adsorption solution until reaching an asymptotic value. During the early stages of adsorption, the metal removal rate is very rapid, after which it gradually decreases. The overall adsorption efficiency order is Pb > Cd > Cu > Ni. The adsorption process is best represented by pseudo-second-order kinetics and an internal surface diffusion model. The primary adsorption process, which takes place between approximately 1 to 2 min and 40 min, appears to be controlled by internal surface diffusion.


Main Subjects

[1] Huang X., Sillanpää M., Gjessing E. T., Peräniemi S., Vogt R. D., Environmental Impact of Mining Activities on the Surface Water Quality in Tibet : Gyama Valley, Sci. Total Environ., 408: 4177-4184 (2010).

[2] Ozay O., Ekici S., Baran Y., Aktas N., Sahiner N., Removal of Toxic Metal Ions with Magnetic Hydrogels, Water Res., 43: 4403-4411 (2009).

[3] Deng P. Y., Liu W., Zeng B. Q., Qiu Y. K., Li L. S., Sorption of Heavy Metals from Aqueous Solution by Dehydrated Powders of Aquatic Plants, Int. J. Environ. Sci. Technol., 10:559–566 (2013).

[5] Hsu P., Leon Y., Antioxidant Nutrients and Lead Toxicity, Toxicology, 180: 33-44 (2002).

[6] Argun M. E., Dursun S., A new Approach to Modification of Natural Adsorbent for Heavy Metal Adsorption, Bioresour. Technol., 99: 2516-2527 (2008).

[7] Hernández-montoya V., Pérez-cruz M. A., Mendoza-castillo D. I., Moreno-virgen M. R., Competitive Adsorption of Dyes and Heavy Metals on Zeolitic Structures, J. Environ. Manage., 116: 213-221 (2013).

[8] Prasad M., Xu H., Saxena S., Multi-component Sorption of Pb (II), Cu (II) and Zn (II) onto Low-cost Mineral Adsorbent, J. Hazard. Mater., 154: 221-229 (2008).

[9] Liu H., Wang C., Liu J., Wang B., Sun H., Competitive Adsorption of Cd(II), Zn(II) and Ni(II) from their binary and ternary acidic systems using tourmaline, J. Environ. Manage., 128: 727-734 (2013).

[10] Shin K. S., Choi E. M., Taeksung H., Preparation and Characterization of Ion-exchange Membrane Using Sty/HEA/LMA Terpolymer via Post-Sulfonation, Desalination, 263: 151-158 (2010).

[11] Yildiz U., Ferkan Ö., Hazer B., The Removal of Heavy Metal Ions from Aqueous Solutions by Novel pH-sensitive Hydrogels, J. Hazard. Mater., 183: 521-532 (2010).

[13] Zhao F., Repo E., Yin D., Sillanpää M. E. T., Adsorption of Cd ( II ) and Pb ( II ) by a Novel EGTA-modified Chitosan Material : Kinetics and Isotherms, J. Colloid Interface Sci., 409, 174-182 (2013).

[15] Hossein, F., Marzieh R., Removal of Chromate from Aqueous Solution by a Novel Clinoptilolite-Polyanillin Composite, Iran. J. Chem. Chem. Eng. (IJCCE), 33, 45-51 (2014).

[16] Solat S., Reza R., Soheila Y., Biosorption of Uranium ( VI ) from Aqueous Solution by Pretreated Aspergillus niger Using Sodium Hydroxide, Iran. J. Chem. Chem. Eng. (IJCCE), 34, 65-74 (2015).

[17] Cardoso A. M., Paprocki A., Ferret L. S., Azevedo C. M. N., Pires M., Synthesis of Zeolite Na-P1 under Mild Conditions using Brazilian Coal Fly Ash and its Application in Wastewater Treatment, Fuel, 139: 59-67 (2015).

[18] Juan R., Hernández S., Andrés J M., Ruiz C., Synthesis of Granular Zeolitic Materials with High Cation Exchange Capacity from Agglomerated Coal Fly Ash, Fuel, 86: 1811-1821 (2007).

[19] Nascimento M., Moreira Soares P S., Paulo de Souza V., Adsorption of Heavy Metal Cations Using Coal Fly Ash Modified by Hydrothermal Method, Fuel, 88: 1714-1719 (2009).

[20] Bhatti H. N., Khadim R., Hanif M. A., Biosorption of Pb(II) and Co(II) on Red Rose Waste Biomass, Iran. J. Chem. Eng. (IJCCE), 30: 81-87(2011).

[21] Mohammad R., Sasan O., Absorption of Lead Ions by Various Types of Steel Slag, Iran. J. Chem. Chem. Eng. (IJCCE), 27, 69-75 (2008).

[22]  Grela A., Hebda M., Miku J., Thermal Behavior and Physical Characteristics of Synthetic Zeolite from CFB-coal Fly Ash, Microporous Mesoporpos Mater., 220:155-162 (2016).

[23] Cardoso A. M., Horn M. B., Ferret L. S., Azevedo C. M. N., Integrated Synthesis of Zeolites 4A and Na–P1 using Coal Fly Ash for Application in the Formulation of Detergents and Swine WastewaterTreatment, J. Hazard. Mater., 287: 69-77 (2015).

[24] Belviso C., Cavalcante F., Gennaro S. D., Lettino A., Palma A., Removal of Mn from Aqueous Solution using Fly Ash and its Hydrothermal Synthetic Zeolite, J. Environ. Manage., 137: 16-22 (2014).

[25] Chen C., Cheng T., Shi Y., Tian Y., Adsorption of Cu ( II ) from Aqueous Solution on Fly Ash Based Linde F(K) Zeolite, Iran. J. Chem. Chem. Eng. (IJCCE), 33:29-35 (2014).

[26] Chen C., Cheng T., Wang Z. L., Han C. H., Removal of Zn2+ in Aqueous Solution by Linde F(K) Zeolite Prepared from Recycled Fly Ash, J. Indian Chem. Soc., 91: 1-7 (2014).

[27] Tanaka H., Fujimoto S., Fujii A., Hino R., Kawazoe T., Microwave Assisted Two-Step Process for Rapid Synthesis of Na-A Zeolite from Coal Fly Ash, Ind. Eng. Chem. Res.,47: 226-230 (2008).

[28]  Somerset V. S., Petrik L. F., White R. A., Klink M. J., Key D., Iwuoha E. I., Alkaline Hydrothermal Zeolites Synthesized from High SiO2 and Al2O3 Co-Disposal Fly Ash Filtrates, Fuel, 84: 2324-2329 (2005).

[30]  Aljeboree A. M., Alshirifi A. N., Alkaim A. F., Kinetics and Equilibrium Study for the Adsorption of Textile Dyes on Coconut Shell Activated Carbon, Arab. J. Chem., (2014).  doi:10.1016/j.arabjc.2014.01.020

[31] Guedidi H., Reinert L., Soneda Y., Bellakhal N., Duclaux L., Adsorption of Ibuprofen from Aqueous Solution on Chemically Surface-modified Activated Carbon Cloths, Arab. J. Chem., 10:S3584-S3594 (2017).

[32] Zahoor M., Khan F. A., Adsorption of Aflatoxin B1 on Magnetic Carbon Nanocomposites Prepared from Bagasse, Arab. J. Chem., (2014).  doi:10.1016/j.arabjc.2014.08.025

[33] Sun D., Zhang X., Wu Y., Liu X., Adsorption of Anionic Dyes from Aqueous Solution on Fly Ash, J. Hazard. Mater., 181: 335-342 (2010).

[35] Yu J. X., Wang L. Y., Chi R. A., ZhangY. F., Xu Z. G., Guo J., Competitive Adsorption of Pb2+ and Cd2+ on Magnetic Modified Sugarcane Bagasse Prepared by Two Simple Steps, Appl. Surf. Sci., 268:163-170 (2013).

[36] Ho Y. S., Mckay G., Pseudo-second Order Model for Sorption Processes, Process Biochem., 34: 451–465 (1999).

[37] Al-degs Y. S., El-barghouthi M. I., Issa A. A., Khraisheh M. A., Walker G. M., Sorption of Zn(II), Pb(II), and Co(II) using Natural Sorbents : Equilibrium and Kinetic Studies, Water Res., 40: 2645-2658 (2006).