Modeling and Optimization of Hybrid HIR Drying Variables for Processing of Parboiled Paddy Using Response Surface Methodology

Document Type : Research Article

Authors

1 Moghan College of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, I.R. IRAN

2 Faculty of Agriculture and Resources, University of Mohaghegh Ardabili, Ardabil, I.R. IRAN

Abstract

The effects of hot air temperature (40, 50 and 60 oC) and Radiation Intensity (RI) (0.21, 0.31 and 0.41 w/cm2) on the response variables (drying time, Head Parboiled Rice Yield (HPRY), color value and hardness)) of parboiled rice were investigated. The drying was performed using hybrid hot air–infrared drying. The optimization of drying variables and the relationship between response variables and the influence factors were analyzed using response surface methodology (RSM).  Based on RSM results, the best mathematical model for prediction of HPRY, hardness and color value and drying time of samples was linear(R2= 0.96), quadratic(R2= 0.99), linear(R2= 0.93) and linear(R2= 0.99) equation, respectively. The HPRY (62.13- 68.13%) and hardness (130.27- 247.3 N) increased with increasing drying temperature and RI, while the color value (19.77- 18.03) and drying time (59.72- 34.41 min) decreased. The optimized parameters of drying were obtained 55 oC drying temperature and 0.41 w/ cm2 RI.

Keywords

Main Subjects


[2] FAO., “Paddy Rice, Production Quantity, Annual Statistics”, 2015, Commodities and Trade Division, FAO of the UN, Rome, (2016).
[3] Taghinezhad E., Khoshtaghaza M.H., Minaei S., Latifi A., Effect of Soaking Temperature and Steaming Time on the Quality of Parboiled Iranian Paddy Rice, Int. J. Food Eng., 11(4): 547-556 (2015).
[4] Taghinezhad E., Khoshtaghaza M.H., Minaei S., Suzuki T., Brenner T., Relationship Between Degree of Starch Gelatinization and Quality Attributes of Parboiled Rice During Steaming, Rice Science, 23(6): 339-344  (2016).
[5] Orikasa T., Koide S., Okamoto S., Imaizumi T., Muramatsu Y., Takeda J., Shiina T., Tagawa A., Impacts of Hot Air and Vacuum Drying on the Quality Attributes of Kiwifruit Slices, J. Food Eng., 125: 51-58  (2014).
[7] Abano E.E., Ma H., Qu W. ,Teye E., Modeling Pre-Treatments Effect on Drying Kinetics of Garlic (Allium sativum L.) Slices in a Convective Hot Air Dryer, Afr. J. Food Sci., 5(7): 425 - 435 (2011).
[9] Kaveh M., Jahanbakhshi A., Abbaspour‐Gilandeh Y, Taghinezhad E., Moghimi MBF., The effect of ultrasound pre‐treatment on quality, drying, and thermodynamic attributes of almond kernel under convective dryer using ANNs and ANFIS network, J Food Process Eng., 41: e12868 (2018).
[10] Torki Harchegan M., Sadeghi, M., Ghanbarian D., Moheb A. Dehydration Characteristics of Whole Lemons in a Convective Hot Air Dryer, Iran. J. Chem. Chem. Eng. (IJCCE), 35(3): 65-73 (2016).
[11] Azzouz S., Hermassi I., Chouikh R., Guizani A., Belghith A., The Convective Drying of Grape Seeds: Effect of Shrinkage on Heat and Mass Transfer, J. Food Process Eng., 41(1): e12614 (2018).
[12] Sufer O., Sezer S., Demir H., Thin Layer Mathematical Modeling of Convective, Vacuum and Microwave Drying of Intact and Brined Onion Slices, J. Food Process Preserv., 41(6): e13239 (2017).  
[13] Wu B., Ma H., Qu W., Wang B., Zhang X., Wang P., Wang J., Atungulu G.G., Pan Z., Catalytic Infrared and Hot Air Dehydration of Carrot Slices, J. Food Process Eng., 37(2): 111-121 (2014).
[14] Nejadi J., Nikbakht A.M., Numerical Simulation of Corn Drying in a Hybrid Fluidized Bed-Infrared Dryer, J. Food Process Eng., 40(2): e12373  (2017).
[16] El-Mesery H.S., Mwithiga G., Performance of a Convective, Infrared and Combined Infrared- Convective Heated Conveyor-Belt Dryer, J. Food Sci. Technol., 52(5): 2721-2730  (2015).
[17] Zare D., Naderi H., Ranjbaran M., Energy and Quality Attributes of Combined Hot-Air/Infrared Drying of Paddy, Drying Technol., 33(5): 570-582 (2015).
[18] Adabi E.M., Motevali A., Nikbakht A.M., Khoshtaghaza M.H., Investigation of Some Pretreatments on Energy and Specific Energy Consumption Drying of Black Mulberry, Chem. Ind. Chem. Eng. Q., 19(1): 89-105 (2013)
[19] Ponkham K., Meeso N., Soponronnarit S., Siriamornpun S., Modeling of Combined Far-Infrared Radiation and Air Drying of a Ring Shaped-Pineapple With/Without Shrinkage, Food Bioprod Proces, 90: 155-164 (2012).
[20] Naidu M.M., Vedhashree M., Satapathy P., Khanum H., Ramsamy R., Hebbar H.U., Effect of Drying Methods on the Quality Characteristics of Dill (Anethumgraveolens) Greens, Food Chem., 192: 849-856 (2016).
[21] Ozdemir M.B., Aktas M., Sevik S., Khanlari A., Modeling of a Convective-Infrared Kiwifruit Drying Process, Int. J. Hydrog Energy, 42(28): 18005- 18013 (2017).
[22] Łechtanska J.M., Szadzinska J., Kowalski S.J., Microwave- and Infrared-Assisted Convective Drying of Green Pepper: Quality and Energy Considerations, Chem. Eng. Proces, 98: 155–164 (2015).
[23] Muzaffar K., Dinkarrao B.V., Kumar P., Yildiz F., Optimization of Spray Drying Conditions for Production of Quality Pomegranate Juice Powder, Cogent Food & Agri, 2(1): 1127583  (2016).
[24] Moghaddam A.D., Pero M., Askari G.R., Optimizing Spray Drying Conditions of Sour Cherry Juice Based on Physicochemical Properties, Using Response Surface Methodology (RSM), J. Food Sci. Technol., 54(1): 174-184 (2017).
[25] Tengse D.D., Priya B., Kumar P.A.R., Optimization for Encapsulation of Green Tea (Camellia sinensis L.) Extract by Spray Drying Technology, Food Measure, 11(1): 85-92  (2017).
[26] Yolmeh M., Jafari S.M., Applications of Response Surface Methodology in the Food Industry Processes, Food Bioproces Technol., 10(3): 413-433 (2017).
[27] Amiri Chayjan R., Kaveh M., Nesa Dibagar N., Nejad M.Z., Optimization of Pistachio Nut Drying in a Fluidized Bed Dryer with Microwave Pretreatment Applying Response Surface Methodology., Chem. Product Proces Model, 12(3): 0048 (2017).
[29] Islam M.R., Roy P., Shimizu N., Kimura T., Effect of Processing Conditions on Physical Properties of Parboiled Rice, Food Sci. Technol. Res., 8(2): 106-112  (2002).
[30] Taghinezhad E., Khoshtaghaza M.H., Suzuki T., Minaei S., Brenner T., Quantifying the Relationship between Rice Starch Gelatinization and Moisture-Electrical Conductivity of Paddy During Soaking, J. Food Process Eng., 39(5): 442-452  (2016).
[31] Nasirahmadi A., Emadi B., Abbaspour-Fard M.H., Aghagolzade H., Influence of Moisture Content, Variety and Parboiling on Milling Quality of Rice Grains, Rice Science, 21(2): 116-122 (2014).
[32] Lamberts L., Bie E.D., Vandeputte G.E., Veraverbeke W.S., Derycke V., Man W.D., Delcour J.A., Effect of Milling on Colour and Nutritional Properties of Rice, Food Chem., 100(4): 1496-1503 (2007).
[33] Taghinezhad E., Sharabiani V.R., Prediction of Starch Gelatinization Degree and Some Quality Properties of Parboiled Rice (Shiroudi Cultivar) During Steaming of Parboiling Process, Food Science & Technology, 15(77): 183-192 (2018) (In Farsi).
[34] Miah M.A.K., Haque A., Douglass M.P., Clarke B., Parboiling of Rice. Part II: Effect of Hot Soaking Time on the Degree of Starch Gelatinization, Int. J. Food Sci. Tech., 37(5): 539-545 (2002).
[35] Khuri A.I., Cornell J.A., “Response Surfaces”, Marcel Dekker, New York, NY. (1987).
[36] Myers R.H., Montgomery D.C., Christine M.A.C., “Response Surface Methodology: Process and Product Optimization Using Designed Experiments”, 4th ed., John Wiley & Sons, Inc., Canada (2016).
[37] Danbaba N., Nkama I., Badau M.H., Ukwungwu M.N., Maji A.T., Abo M.E., Hauwawu H., Fati K.I., Oko A.O., Optimization of Rice Parboiling Process for Optimum Head Rice Yield: a Response Surface Methodology (RSM) Approach, Int. J. Agri. and Forest, 4(3): 154-165 (2014).
[38] Sareepuang K., Siriamornpun S., Wiset L., Meeso N., Effect of Soaking Temperature on Physical, Chemical and Cooking Properties of Parboiled Fragrant Rice, World J. Agri. Sci., 4(4): 409-415 (2008).
[40] Tirawanichakul S., Bualuang O., Tirawanichakul Y., Study of Drying Kinetics and Qualities of Two Parboiled Rice Varieties: Hot Air Convection and Infrared Irradiation, Songklanakarin, J. Sci. Technol, 34(5): 557-568  (2012).
[41] Bualuang O., Tirawanichakul Y., Tirawanichakul S., Comparative Study between Hot Air and Infrared Drying of Parboiled Rice: Kinetics and Qualities Aspects, J. Food Process Preserv., 37(6): 1119-1132  (2013).
[42] Islam M.R., Shimizu N., Kimura T., Energy Requirement in Parboiling and Its Relationship to some Important Quality Indicators, J. Food Eng., 63(4): 433-439 (2004).
[43] Ayamdoo A.J., Demuyakor B., Dogbe W., Owusu R., Ofosu M.A., Effect of Varying Parboiling Conditions on Physical Qualities of Jasmine 85 and Nerica 14 Rice Varieties, American J Food Technol, 8(1): 31-42  (2013).
[44] Parnsakhorn S., Noomhorm A., Changes in Physicochemical Properties of Parboiled Brown Rice During Heat Treatment, Agri. Eng. Int: The CIGR E-journal, Manuscript FP 08 009. Vol. X (2008).
[45] Pal P., Singh N., Kaur P., Kaur A., Virdi A.S., Parmar N., Comparison of Composition, Protein, Pasting, and Phenolic Compounds of Brown Rice and Germinated Brown Rice from Different Cultivars, Cereal Chem., 93(6): 584-592 (2016).
[46] Miah M.A.K., Haque A., Douglass M.P., Clarke B., Parboiling of Rice. Part I: Effect of Hot Soaking Time on Quality of Milled Rice, Int. J. Food Sci. Tech., 37(5): 527-537 (2002).
[47] Kaveh M., Abbaspour-Gilandeh Y., Amiri Chayjan R.M., Taghinezhad E., Mohammadigol R., Mass Transfer, Physical, and Mechanical Characteristics of Terebinth Fruit (Pistacia atlantica L.) Under Convective Infrared Microwave Drying, Heat Mass Transf., 54 (7): 1879–1899 (2018).
[48] Lv B., Li B., Chen S., Chen J., Zhu B., Comparison of Color Techniques to Measure the Color of Parboiled Rice, J. Cereal Sci., 50(2): 262-265 (2009).
[49] Onwude D.I., Hashim N., Abdan K., Janius R., Chen G., Investigating the Influence of Novel Drying Methods on Sweet Potato (Ipomoea batatas L.): Kinetics, Energy Consumption, Color, and Microstructure, J. Food Process Eng., 41(4):e12686  (2018).
[50] Taghinezhad E., Rasooli Sharabiani V., The Effect of Combination Dryer of Hot Air-Infrared and Microwave on Some Quality Properties of Parboiled Rice, Innovative Food Technologies, 5(1): 25-38 (2017).
[51] Nozad M., Khojastehpour M., Tabasizadeh M., Azizi M., Ashtiani S.H.M., Salarikia A., Characterization of Hot-Air Drying and Infrared Drying of Spearmint (Mentha spicata L.) Leaves., Food Measure, 10(3): 466-473 (2016).