Adsorption Performance Indicator for Power Plant CO2 Capture on Graphene Oxide/TiO2 Nanocomposite

Document Type: Research Article

Authors

1 School of Environment, College of Engineering, University of Tehran, P.O. Box 14155-6135 Tehran, I.R. IRAN

2 Department of Environmental Research, Institute for Color Science and Technology, Tehran, I.R. IRAN

Abstract

This study presents the adsorption performance indicator for the evaluation of thermal power plant CO2 capture on mesoporous graphene oxide/TiO2 nanocomposite. To begin, this adsorbent was synthesized and characterized using N2 adsorption-desorption measurements (BET and BJH methods), X-Ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FE-SEM) and FT-IR spectroscopy. Subsequently, the pure single-component adsorption isotherms measured at 298 K and the Ideal Adsorbed Solution Theory (IAST) solved with direct search minimisation were applied to estimate the selectivity of the synthesized mesoporous graphene oxide/TiO2 nanocomposite for CO2 over N2 and predict CO2 adsorption capacity in the CO2:N2 binary gas mixtures, including the molar ratio of 5:95, 10:90 and 15:85. Finally, the results validated by the breakthrough experiments at a fixed-bed column were applied to estimate the Adsorption Performance Indicator (API) for the evaluation of CO2 separation from N2 in the Pressure Swing Adsorption (PSA) process with respect to different types of thermal power plants.

Keywords

Main Subjects


[1] Leung D.Y., Caramanna G., Maroto-Valer, M.M., An Overview of Current status of Carbon Dioxide Capture and Storage Technologies, Renewable and Sustainable Energy Reviews, 39: 426-443(2014).

[2] Balasubramanian R., Chowdhury S., Recent Advances and Progresses in the Development of Graphene-Based Adsorbents for CO2 Capture, Journal of Materials Chemistry A, 3(44): 21968-21989 (2015).

[3] Sreenivasulu B., Gayatri D.V., Sreedhar I., Raghavan K.V., A Journey into the Process and Engineering Aspects of Carbon Capture Technologies, Renewable and Sustainable Energy Reviews, 41:1324-1350 (2015).

[4] Budzianowski W.M., Single Solvents, Solvent Blends, and Advanced Solvent Systems in CO2 Capture by Absorption: A Review, International Journal of Global Warming, 7(2): 184-225 (2015).

[5] Banerjee A., Panda S., Sidhantha M., Chakrabarti S., Chaudhuri B., Bhattacharjee S., Utilisation of Eggshell Membrane as an Adsorbent for Carbon Dioxide, International Journal of Global Warming, 2(3): 252-261 (2010).

[6] Wang J., Huang L., Yang R., Zhang Z., Wu J., Gao Y., Wang Q., O'Hare D., Zhong Z., Recent Advances in Solid Sorbents for CO2 Capture and New Development Trends, Energy & Environmental Science, 7(11): 3478-3518 (2014).

[7] Zhou D., Liu Q., Cheng Q., Zhao Y., Cui Y., Wang T., Han B., Graphene-Manganese Oxide Hybrid Porous Material and its Application in Carbon Dioxide Adsorption, Chinese Science Bulletin, 57(23): 3059-3064 (2012).

[8] Yang S., Zhan L., Xu X., Wang Y., Ling L., Feng X., Graphene‐Based Porous Silica Sheets Impregnated with Polyethyleneimine for Superior CO2 Capture, Advanced Materials, 25(15): 2130-2134 (2013).

[9] Mishra A.K., Ramaprabhu S., Enhanced CO2 Capture in Fe3O4-Graphene Nanocomposite by Physicochemical Adsorption, Journal of Applied Physics, 116(6): 064306 (2014).

[10] Cao Y., Zhao Y., Lv Z., Song F., Zhong Q., Preparation and Enhanced CO2 Adsorption Capacity of UiO-66/Graphene Oxide Composites, Journal of Industrial and Engineering Chemistry27:102-107 (2015).

[11] Wang J., Mei X., Huang L., Zheng Q., Qiao Y., Zang K., Mao S., Yang R., Zhang Z., Gao Y., Guo Z., Synthesis of Layered Double Hydroxides/Graphene Oxide Nanocomposite as a Novel High-Temperature CO2 adsorbent, Journal of Energy Chemistry,  24(2):127-137 (2015).

[12] Chowdhury S., Parshetti G.K., Balasubramanian R., Post-Combustion CO2 Capture Using Mesoporous TiO2/Graphene Oxide Nanocomposites, Chemical Engineering Journal, 263: 374-384 (2015).

[13] Goel M., Johri V., “Carbon Capture, Storage and, Utilization: A Possible Climate Change Solution for Energy Industry”, India's Climate Change Research Institute, New Delhi, India (2014).

[14] Samanta A., Zhao A., Shimizu G.K., Sarkar P., Gupta R., Post-Combustion CO2 Capture Using Solid Sorbents: A Review, Industrial & Engineering Chemistry Research, 51(4):1438-1463 (2011).

[15] Walton, K.S., Sholl D.S., Predicting Multicomponent Adsorption: 50 Years of the Ideal Adsorbed Solution Theory, AIChE Journal, 61(9): 2757-2762 (2015).

[16] Belmabkhout Y., Serna-Guerrero R., Sayari A., Adsorption of CO2 from Dry Gases on MCM-41 Silica at Ambient Temperature and High Pressure. 1: Pure CO2 Adsorption, Chemical Engineering Science, 64(17): 3721-3728 (2009).

[17] Dickey A.N., Yazaydın A.Ö., Willis R.R., Snurr R.Q., Screening CO2/N2 Selectivity in Metal‐Organic Frameworks Using Monte Carlo Simulations and Ideal Adsorbed Solution Theory, The Canadian Journal of Chemical Engineering, 90(4): 825-832 (2012).

[18] Karra J.R., Grabicka B.E., Huang Y.G., Walton K.S., Adsorption Study of CO2, CH4, N2, and H2O on an Interwoven Copper Carboxylate Metal–Organic Framework (MOF-14), Journal of Colloid and Interface Science, 392: 331-336 (2013).

[19] Furmaniak S., Koter S., Terzyk A.P., Gauden P.A., Kowalczyk P., Rychlicki G., New Insights into the Ideal Adsorbed Solution Theory, Physical Chemistry Chemical Physics, 17(11): 7232-7247 (2015).

[20] Pham T.H., Lee B.K., Kim J., Lee C.H., Enhancement of CO2 Capture by Using Synthesized Nano-Zeolite, Journal of the Taiwan Institute of Chemical Engineers, 64:220-226(2016).

[21] Álvarez-Gutiérrez N., Gil M.V., Rubiera F., Pevida C., Adsorption Performance Indicators for the CO2/CH4 Separation: Application to Biomass-Based Activated Carbons’, Fuel Processing Technology, 142:361-369 (2016).

[22] Wiersum A.D., Chang J.S., Serre C., Llewellyn P.L., An Adsorbent Performance Indicator as a First Step Evaluation of Novel Sorbents for Gas Separations: Application to Metal–Organic Frameworks, Langmuir, 29(10): 3301-3309 (2013).

[23] Monazam E.R., Spenik J., Shadle L.J., Fluid Bed Adsorption of Carbon Dioxide on Immobilized Polyethylenimine (PEI): Kinetic Analysis and Breakthrough Behavior, Chemical Engineering Journal, 223: 795-805 (2013).

[24] Shafeeyan M.S., Daud W.M.A.W., Shamiri A., Aghamohammadi N., Modeling of Carbon Dioxide Adsorption onto Ammonia-Modified Activated Carbon: Kinetic Analysis and Breakthrough Behavior, Energy & Fuels, 29:10: 6565-6577 (2015).

[25] Serna-Guerrero R., Sayari A., Modeling Adsorption of CO2 on Amine-Functionalized Mesoporous Silica. 2: Kinetics and Breakthrough Curves, Chemical Engineering Journal, 161(1): 182-190 (2010).

[26] Bell S., "A Beginner's Guide to Uncertainty of Measurement", National Physical Laboratory, Teddington, Middlesex, The United Kingdom (2010).

[27] Santori G., Luberti M., Ahn H., Ideal Adsorbed Solution Theory Solved with Direct Search Minimisation, Computers & Chemical Engineering, 71: 235-240 (2014).

[28] Štengl V., Popelková D., Vláčil P., TiO2–Graphene Nanocomposite as High Performace Photocatalysts, The Journal of Physical Chemistry C, 115(51): 25209-25218 (2011).

[29] Zhang Y., Zhou Z., Chen T., Wang H., Lu W., Graphene TiO2 Nanocomposites with High Photocatalytic Activity for the Degradation of Sodium Pentachlorophenol, Journal of Environmental Sciences, 26(10): 2114-2122 (2014).

[30] Wu F.C., Wu P.H., Tseng R.L., Juang R.S., Description of Gas Adsorption Isotherms on Activated Carbons with Heterogeneous Micropores Using the Dubinin–Astakhov Equation, Journal of the Taiwan Institute of Chemical Engineers, 45(4): 1757-1763 (2014).

[31] Thommes M., Kaneko K., Neimark A.V., Olivier J.P., Rodriguez-Reinoso, F., Rouquerol, J. and Sing, K.S., Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report), Pure and Applied Chemistry, 87(9-10):1051-1069 (2015).

[32] Li W., Jiang X., Yang H., Liu Q., Solvothermal Synthesis and Enhanced CO2 Adsorption Ability of Mesoporous Graphene Oxide-ZnO Nanocomposite, Applied Surface Science, 356: 812-816 (2015).

[33] Rios R.B., Stragliotto F.M., Peixoto H.R., Torres A.E.B., Bastos-Neto M., Azevedo D.C.S., Cavalcante Jr C.L., Studies on the Adsorption Behavior of CO2-CH4 Mixtures Using Activated Carbon, Brazilian Journal of Chemical Engineering30(4): 939-951(2013).

[34] Dangi G.P., Munusamy K., Somani R.S., Bajaj H.C., Adsorption Selectivity of CO2 over N2 by Cation Exchanged Zeolite L: Experimental and Simulation Studies, Indian Journal of Chemistry-Part A Inorganic Physical Theoretical and Analytical, 51(9): 1238 (2012).

[35] Rallapalli P., Prasanth K.P., Patil D., Somani R.S., Jasra R.V., Bajaj H.C., Sorption studies of CO2, CH4, N2, CO, O2 and Ar on nanoporous aluminum terephthalate [MIL-53 (Al)]’, Journal of Porous Materials, 18(2): 205-210 (2011).

[36] Xu X., Zhao X., Sun L., Liu X., Adsorption Separation of Carbon Dioxide, Methane and Nitrogen on Monoethanol Amine Modified β-Zeolite, Journal of Natural Gas Chemistry, 18(2):167-172 (2009).

[37] Shao W., Zhang L., Li L., Lee R.L., Adsorption of CO2 and N2 on Synthesized NaY Zeolite at High Temperatures, Adsorption, 15(5-6): 497-505 (2009).

[38] Bae Y.S., Farha O.K., Hupp J.T., Snurr R.Q., Enhancement of CO2/N2 Selectivity in a Metal-Organic Framework by Cavity Modification, Journal of Materials Chemistry, 19(15): 2131-2134 (2009).

[39] Chowdhury S., Balasubramanian R., Three-Dimensional Graphene-Based Porous Adsorbents for Postcombustion CO2 Capture, Industrial & Engineering Chemistry Research, 55(29): 7906–7916 (2016).

[40] Chowdhury S., Balasubramanian R., Holey Graphene Frameworks for Highly Selective Post-Combustion Carbon Capture, Scientific reports, 6: 1-10 (2016).

[41] Das A., Southon P.D., Zhao M., Kepert C.J., Harris A.T., D'Alessandro D.M., Carbon Dioxide Adsorption by Physisorption and Chemisorption Interactions in Piperazine-Grafted Ni2 (dobdc) (dobdc= 1, 4-dioxido-2, 5-benzenedicarboxylate), Dalton Transactions, 41(38):11739-11744 (2012).

[42] Yang S.T., Kim J., Ahn W.S., CO2 Adsorption over Ion-Exchanged Zeolite Beta with Alkali and Alkaline Earth Metal Ions, Microporous and Mesoporous Materials, 135(1): 90-94 (2010).

[44] Pham T.D., Xiong R., Sandler S.I., Lobo R.F., Experimental and Computational Studies on the Adsorption of CO2 and N2 on Pure Silica Zeolites, Microporous and Mesoporous Materials, 185: 157-166 (2014).

[45] McEwen J., Hayman J.D., Yazaydin A.O., A Comparative Study of CO2, CH4 and N2 Adsorption in ZIF-8, Zeolite-13X and BPL Activated Carbon, Chemical Physics, 412: 72-76 (2013).

[46] Kim J., Kim W.Y., Ahn W.S., Amine-Functionalized MIL-53 (Al) for CO2/N2 Separation: Effect of Textural Properties, Fuel, 102: 574-579 (2012).