Effects of Solvent on the Structure and Properties of Titanium Dioxide Nanoparticles and Their Antibacterial Activity

Document Type: Research Article

Authors

1 Department of Chemistry, Kohat University of Science & Technology, Kohat-26000 (Khyber Pakhtunkhwa) PAKISTAN

2 Department of Botany, Kohat University of Science & Technology, Kohat-26000 (Khyber Pakhtunkhwa) PAKISTAN

3 Islamia College University, Peshawar, (Khyber Pakhtunkhwa) PAKISTAN

Abstract

Titanium dioxide is semiconductor metal oxide having many applications in photocatalytic activities, cosmetics and in the food industry. It exists in three major crystalline forms: anatase, rutile and brookite. The solvents play a major role in the synthesis, stability and morphology of the metal oxide nanoparticles. It affects both the phase and particle size of metal oxide. The main focus of the present study is to establish the effects of solvent on the phase of TiO2 nanoparticle. Titanium dioxide (TiO2) nanoparticles have been synthesized by the sol-gel method using different solvents. The XRD results showed that the average crystallite size of all the samples was in the range of 5-25 nm. TiO2 nanoparticles prepared in different solvents gave different FT-IR peaks. AFM data clarified that the majority of samples showed spherical shape with average particle size ranging from 10-68 nm. The nanoparticles prepared in diethanolamine, acetic acid, and propionic acid solvents showed comparatively good antibacterial activity due to the rutile phase of the nanoparticles. the pH of the solvent also influences titanium dioxide structure and antibacterial properties

Keywords

Main Subjects


[1] Kavitha K.S., Baker S., Rakshith D., Kavitha H.U., Yashwantha Rao H.C., Harini B.P., Plants as Green Source Towards Synthesis of Nanoparticles, Int. Research J. Bio. Sci., 2(6): 66-77 (2013).

[2] Abhilash M., Potential Applications of Nanoparticles, Int. J. Pharm. Biol. Sci., 1(1): 1-12 (2010).

[3] Nagarajan S., Arumugam K. K., Extracellular Synthesis of Zinc Oxide Nanoparticle Using Seaweeds of Gulf of Mannar, India, J. Nanobiotechnol, 11(1): 1-39 (2013).

[4] Shi H., Magaye R., Castranova V., Zhao J., Titanium Dioxide Nanoparticles: A Review of Current Toxicological Data, Particle and Fibre Toxicology, 10(1): 1-33 (2013).

[5] Ahmad R., Meryam S., TiO2 Nanoparticles as an Antibacterial Agents against E. Coli, Int. J. Innov Res. Sci. Eng. Technol., 2(8): 3569-3574 (2013).

[7] Mazloum-Ardakani M., Khoshroo A.R., Synthesis of TiO2 Nanoparticle and Its Application to Graphite Composite Electrode for Hydroxylamine Oxidation, J. Nanostruct, 3(3): 269-275 (2013).

[8] Tavares K.P., Caloto-Oliveira Á., Vicentini D.S., Melegari S.P., Matias W.G., Barbosa S., Kummrow F., Acute Toxicity of Copper and Chromium Oxide Nanoparticles to Daphnia Similis, Ecotoxicol. Environ. Contam, 9(1): 43-50 (2014).

[9] Al-baker S.M., Al-Gasha’al F.A.S., Alqudami A.Q., Evaluation of Antibacterial Activity of Metal Nanoparticles Against Different Pathogenic Bacteria, Glob. J. Adv. Eng. Technol. Sci., 2(2): 1-6 (2015).

[10] Khashan k.S., Sulaima G.M., Ameer F.A.A., Marzoog T.R., Synthesis, Antibacterial Activity of TiO2 Nanoparticles Suspension Induced by Laser Ablation in Liquid, Eng. &Tech. Journal, 32(5): 877-884 (2014).

[11] Banu S., Vishnu V., Jamuna K., Kurian G.A., Physiochemical Investigation and Biovaluation of TiO2 Nanocrystals Synthesized by Chemical and Green Route, Int. J. Pharm. Pharm. Sci., 6(11): 396-400(2014).

[12] Periyat P., McCormack D.E., Hinder S.J., Pillai S.C., One-Pot Synthesis of Anionic (Nitrogen) and Cationic (Sulfur) Codoped High-Temperature Stable, Visible Light Active, Anatase Photocatalysts, J. Phys. Chem. C, 113(8):  3246-3253 (2009).

[13] Kobayashi M., Kato H., Kakihana M., Synthesis of Titanium Dioxide Nanocrystals With Controlled Crystal- and Micro-Structures from Titanium Complexes, Nanomaterials and Nanotechnology, 3(23): 1-10 (2013).

[14] Tao P., Li Y., Rungta A., Viswanath A., Gao J., Benicewicz B.C., Siegel R.W., Schadler L.S., TiO2 Nanocomposites with High Refractive Index and Transparency, J. Mater. Chem, 21(46): 18623-18629 (2011).

[15] Visai L., De Nardo L., Punta C., Melone L., Cigada A., Imbriani M., Arciola C.R., Titanium Oxide Antibacterial Surfaces in Biomedical Devices, Int. J. Artif. Organs, 34(9): 929-946 (2011).

[16] Guoqiang Z., Wenying W., Baofeng Z., Li Y., Preparation and Photocatalytic Properties of Fe3+Doped TiO2 Nanoparticles, European Chemical Bulletin, 2(12): 1045-1048 (2013).

[17] Chen L., Rahme K., Holmes J.D., Morris M.A., Slater N.K., Non-Solvolytic Synthesis of Aqueous Soluble TiO2 Nanoparticles and Real-Time Dynamic Measurements on the Nanoparticle Formation, Nanoscale res. lett., 7(297): 1-10 (2012).

[18] Kondratiev V.I., Kink I., Romanov A.E., Low Temperature Sol-Gel Technique for Processing Al-Doped Zinc Oxide Films, Mater. Phys. Mech., 17: 38-46 (2013).

[19] Ullattil S.G., Periyat P., Sol-Gel Synthesis of Titanium Dioxide. In: Pillai S., Hehir S. (Eds) “Sol-Gel Materials for Energy, Environment and Electronic Applications. Advances in Sol-Gel Derived Materials and Technologies”, Springer, Cham, (2017).

[20] Atheel H.A., Ahmad Z.A., Ismail N., TiO2-Zeolite Y Catalyst Prepared Using Impregnation and Ion-Exchange Method for Sonocatalytic Degradation of Amaranth Dye In Aqueous Solution, World. Acad. Sci. Eng. Technol., 7(6):  375-383 (2013).

[22] Horowitz F., Dawnay E.J.C., Fardad M.A., Green M., Yeatman E.M., Towards Better Control of Sol-Gel Film Processing for Optical Device Applications, J. Nonlinear Optic. Phys. Mat., 06(01): 1-18 (1997).

[23] Edusi C., Sankar G., Parkin I.P., The Effect of Solvent on the Phase of Titanium Dioxide Deposited by Aerosol-Assisted CVD, Chem. Vap. Deposition, 18(4-6): 126-132 (2012).

[24] Trung T., Won-Jei C., Chang-Sik H., Preparation of TiO2 Nanoparticles in Glycerol-Containing Solutions, Mater. Lett., 57(18): 2746-2750 (2003).

[25] Shahab M.U., Tabish T.A., Zaman B., Zahra T., Kamran M., Characterization and Synthesis of Nanosized TiO2  Particles, Int. J. Eng., 3: 313-16 (2013).

[26] Hema M., Yelil A.A., Tamilselvi P., Anbarasan R., Titania Nanoparticles Synthesized by Sol-Gel Technique, Chem. Sci. Trans., 2: 239-245 (2013).

[27] Ramesh P., Muthukkumarasamy S., Dhanabalan K., Sadhasivam T., Gurunathan K., Synthesis and Characterization of Ag and TiO2 Nanoparticles and Their Anti-Microbial Activities, Dig. J. Nanomater. Biostruct., 7(4): 1501-1508 (2012).

[28] Reddy Yadav L.S., Manjunath Kavitha K., Nagaraju G., Investigation of Hydrogen Generation and Antibacterial activity by Ionic liquid aided synthesis of TiO2 nanoparticles, Journal of Science: Advanced Materials and Devices (accepted) (2018).

[29] Eiji I., Yoshinori H., Hiroyoshi O., Hagino J., Koizum N., Dielectric Properties of Ethanolamines, Bulletin of the Institute for Chemical Research, Kyoto University, 46(5): 239-247(1969).

[30] Shirke B.S., Korake P.V., Hankare P.P., Bamane S.R., Garadkar K.M., Synthesis and Characterization of Pure Anatase TiO2 Nanoparticles, J. Mater. Sci.: Mater. Electron., 22(7): 821-824 (2011).

[31] Chen H.-S., Su C., Chen J.-L., Yang T.-Y., Hsu N.-M., Li W.-R., Preparation and Characterization of Pure Rutile TiO2 Nanoparticles for Photocatalytic Study and Thin Films for Dye-Sensitized Solar Cells, J. Nanomater., 2011: 1-8 (2011).

[32] Pawar S. G., Patil S. L., Chougule M. A., Jundhale D.M., Patil V.B., Microstructural, Optical and Electrical Studies on Sol Gel Derived TiO2 Thin Films, Archives of Physics Research, 1(1): 57-66 (2010).

[33] Coronado D.R., Gattorno G.R., Espinosa-Pesqueira M.E., Cab C., Phase Pure TiO2 Nanoparticles: Anatase, Brookite and Rutile, Nanotechnology, 19(14): 1-10 (2008).

[35] Štengl V., Bakardjieva S., Šubrt J., Večerníková E., Szatmary L., Klementová M., Balek V., Sodium Titanate Nanorods: Preparation, Microstructure Characterization and Photocatalytic Activity, Appl. Catal. B Environ., 63(1):  20-30 (2006).

[36] Rasooli A., Boutorabi M. A., Divandari M.,  Azarniya A., Effect of High Heating Rate on Thermal Decomposition Behavior of Titanium Hydride (TiH2) Powder In Air, Bull. Mater. Sci., 36(2): 301-309 (2013).

[37] Sohn J., Lee S.H., Cheon P., Kim H., Acidic Properties and Catalytic Activity of Titanium Sulfate Supported on TiO2, Bull. Korean Chem. Soc., 25(5): 657-664 (2004).

[38] Sarala D.K., Shanth K. A., Srinivas R.K., Effect of pH on Synthesis of Single Phase Titania (TiO2) Nanoparticles and its Characterization, Particulate Science and Technology: An International Journal, 33(3): 219-223 (2014).

[39] Gökdemir F.P., Yüzbaşıoğlu V.E., Keskin B., Özdemir O., Kutlu K., Formation of TiO2 Thin Films by a Modified Sol-Gel Route and Characterization of Structural, Optical and Electrochromic Properties, Advanced Materials Letters, 5(7): 367-371(2014).

[40] Vetrivel V., Rajendran K., Kalaiselvi V., Synthesis and Characterization of Pure Titanium Dioxide Nanoparticles by Sol- Gel Method, Int. J. Chemtech. Res. 7(3): 1090-1097 (2015).

[41] Daniela C.L.V., Vilma C.C., Eduardo H.M.N., Antônio C.S.S., Massimo G., Vasconcelos W.L., Infrared Spectroscopy of Titania Sol-Gel Coatings on 316L Stainless Steel, Materials Sciences and Applications, 2: 1375-1382 (2011).

[42] Kavitha T., Rajendran A., Arulnandhi D., Synthesis and Characterization of Nanosized TiO2 Powder Derived from a Sol–Gel Process in Acidic Conditions, International Journal of Engineering Sciences & Emerging Technologies, 4(2): 90-95 (2013).

[43] Corobea M.S., Stoenescu M., Miculescu M., Raditoiud V., Fierascu R.C., Sirbu I., Vuluga Z., Voicu S.I., Titanium Functionalizing and Derivatizing for Implantable Materials Osseointegration Properties Enhancing, Dig. J. Nanomater. Biostruct., 9(4): 1339-1347 (2014).

[44] Rajendra S. K., Kashinath B., Ingale N.L., Developement of Ammonia Sensor Using Nano-Titanium Blended Hydroxyapatite Nanoceramics, International Journal of Pure and Applied Research In Engineering and Technology, 3(9): 135-142 (2015).

[45] Wojtoniszak M., Zielinska B., Kalenczuk R., Mijowska J., Photocatalytic Performance of Titania Nanospheres Deposited on Graphene in Coumarin Oxidation Reaction, Materials Science-Poland, 30(1): 32-38 (2012).

[46] Hafizah N., Jamal P., Karim M.I.A., Sopyan I., TiO2  Powder Photocatalyst from Sol-Gel Route and Its Immobilisation with Cement for Photocatalytic Phenol Removal, The Journal of the Institution of Engineers, 70(4):  49-56 (2010).

[47] Boccuzzi F., Chiorino A., Martra G., Gargano M., Ravasio N., Carrozzini B., Preparation, Characterization, and Activity of Cu/TiO2 Catalysts. I. Influence of the Preparation Method on the Dispersion of Copper in Cu/TiO2J. Catal., 165(2): 129-39 (1997).

[48] Ljubica M. N., Marija M., Paula F., Paula M.V., Synthesis and Characterization of One-Dimensional Titanate Structure, Processing and Application of Ceramics, 2(2): 109-114 (2008).

[49] Oja I., Mere A., Krunks M., Solterbeck C.-H., Es-Souni M., Properties of TiO2 Films Prepared
by the Spray Pyrolysis Method
, Solid State Phenom., 99-100: 259-264 (2004).

[50] Morris Hotsenpiller P.A., Bolt J.D., Farneth W.E., Lowekamp J.B., Rohrer G.S., Orientation Dependence of Photochemical Reactions on TiO2 Surfaces, J. Phys. Chem. B., 102(17): 3216-3226 (1998).

[51] Haoyong Y., Zhensheng J., Shunli Z., Shoubin W., Zhijun Z., Reason for the Loss of Hydrophilicity of TiO2 Film and its Photocatalytic Regeneration, Science in China, Series B, 45(6): 625-32 (2002).