Capacitance Properties of Electrochemically Synthesised Polybithiophene-Graphene Exfoliated Composite Films

Document Type : Research Article

Authors

Laboratoire d’Electrochimie et Matériaux (LEM), Département de Génie des procédés, Faculté de Technologie, Université Ferhat Abbas, Sétif, 19000, ALGÉRIE

Abstract

The graphene (GR) has attracted intensive interest due to its two-dimensional and unique physical properties. In the present study, the graphene sheets were synthesized by electrochemical exfoliation of graphite in sulfuric acid solution. The polybithiophene-graphene (PbTh-GR) composite films deposited onto indium tin oxide substrate (ITO/PbTh-GR) have been prepared by the incorporation of graphene sheets into the PbTh matrix during electropolymerization under magnetic stirring from the LiClO4/CH3CN electrolyte containing the bithiophene (bTh) monomer and graphene sheets. The incorporation of graphene sheets at different masses (1, 2 and 3 mg) is ensured by the effect of the stirring of the electrolyte. The characterisation of films is effected by electrochemical methods (cyclic voltammetry and impedance spectroscopy), spectroscopic technics (FT-IR, UV-Visible), X ray diffraction, thermogravimetric analysis, and scanning electron microscopy. It was observed that the electrochemical performance measurements of the ITO/PbTh-GR (3 mg) film show a specific capacity of around 65 F/g, which is six times higher than that of ITO/PbTh films, 11 F/g

Keywords

Main Subjects


[1] Malenahalli H.N., Nanjanagudu G.G., Yoon-Bo.S., Applications of Conducting Polymer Composites
to Electrochemical Sensors
, Applied Materials Today, 9: 419-433 (2017).
[2] Bahloul A., Nessark B., Briot E., Groult H., Mauger A., Zaghib K., Julien CM., Polypyrrole-Covered MnO2 as Electrode Material for Supercapacitor, J. Power. Sources., 240: 267–272 (2013).
[4] Thakur A.K., Choudhary R.B., Majumder M., Gupta G., Shelke M.V., Enhanced Electrochemical Performance of Polypyrrole Coated MoS2 Nanocomposites as Electrode Material for Supercapacitor Application, J.Electroanal. Chem., 782: 278-287 (2016).
[6] Gu L., Wang J., Qi R., Wang X., Xu P., Han X., A Novel Incorporating Style of Polyaniline/TiO2 Composites Visible Photocatalysts as Effective, J. Mol. Catal. A. Chem., 357: 19–25 (2012).
[8] Li L., Liu E., Li J., Yang Y., Shen H., Huang Z., Xiang X., Li W., A Doped Activated Carbon Prepared from Polyaniline for High Performance Supercapacitors, J. Power.Sources., 195 (5): 1516–1521 (2010).
[9] Thakur A.K., Deshmukh A.B., Choudhary R.B., Karbhal I., Majumder M., Shelke M.V., Facile Synthesis and Electrochemical Evaluation of PANI/CNT/MoS2 Ternary Composite as an Electrode Material for High Performance Supercapacitor, Mater. Sci. Eng. B., 223: 24–34 (2017).
[10] Wu SZ., Ren W., Wang DW., Li F., Liu B., Cheng HM., High-Energy MnO2 Nanowire/Graphene
and Graphene Asymmetric Electrochemical Capacitors,
ACS Nano., 4(10): 5835–5842 (2010).
[11] Zhang B., Chen Y., Ren Y., Xu LQ., In Situ Synthesis and Nonvolatile Rewritable-Memory Effect of Polyaniline-Functionalized Graphene Oxide, J. Chem. Eur.,19(20): 6265–6273 (2013).
[12] Randhir S., Chandra C T., Electrochemical Exfoliation of Graphite into Graphene for Flexible Supercapacitor Application, Materials Today: Proceedings, 5: 1125–1130 (2018).
[13] Li G., Li Y., H, Qi Pengn Y., Synthesis and Electrochemical Performances of Dispersible Polyaniline/Sulfonated Graphene Composite Nanosheet, Synth. Met., 184(5): 10–15 (2013).
[14] Xu J., Wang K., Zu SZ., Han BH., Wei Z., Hierarchical Nanocomposites of Polyaniline Nanowire Arrays on Graphene Oxide Sheets with Synergistic Effect for Energy Storage, ACS Nano., 4(9): 5019–5026 (2010).
[16] Liu F., Song S., Xue D., Zhang H., Folded Structured Graphene Paper for High Performance Electrode Materials, Adv. Mater., 24 (8): 1089–1094 (2012).
[17] Wang J., Manga KK., Bao Q., Loh KP., High-Yeild., Synthesis of Few-Layer Graphene Flakes through Electrochemical Expansion of Graphite in Propylene Carbonate Electrolyte, J Am. Chem. Soc.,133 (23): 8888–8891 (2011).
[18] Su CY., Lu AY., Xu Y., Chen FR., Khlobystov A N., Li LJ., High-Quality Thin Graphene Films from Fast Electrochemical Exfoliation, ACS Nano.,5 (3): 2332–2339 (2011).
[19] Xu H., Suslick KS., Sonochemical Preparation of Functionalized Graphenes, J. Am. Chem. Soc., 133(24): 9148–9151 (2011).
[20] Liu C., Li F., Ma LP., Cheng HM., Advanced Materials for Energy Storage, Adv Mater.,22(8): E28E62 (2010).
[22] Xinming W., Qiguan W., WenzhiZ., Yan W., Weixing C., Enhanced Electrochemical Performance of Hydrogen-Bonded Graphene/Polyaniline for Electrochromo-Supercapacitor, J Mater. Sci., 51(16): 7731–7741 (2016).
[24] Li ZF., Zhang HY., Liu Q., Sun LL., Stanciu L., Xie J., Fabrication of High–Surface–Area Graphene/ Polyaniline Nanocomposites and Their Application in Supercapacitors, ACS. Appl. Mater. Inter., 5(7): 2685–2691 (2013).
[25] Zhao W., Zhou X., Xue Z., Wu B., Liu X., Lu X., Electrodeposition of Platinum Nanoparticles on Polypyrrole-Functionalized Graphene, J. Mater. Sci., 48(6): 2566–2573 (2013).
[26] Zuoa X., Zhanga Y., Sia L., Zhoua B., Zhaoa B., Zhub L., Jianga X., One-Step Electrochemical Preparation of Sulfonated Graphene/Polypyrrole Composite and Its Application to Supercapacitor,
J. Alloys. Compd., 688 B: 140–148 (2016).
[28] Takahashi A., Lin CJ., Ohshimizu K., Higashihara T., Chen WC., Ueda M., Synthesis and Characterization of Novel Polythiophenes with Graphene-Like Structures via Intramolecular Oxidative Coupling, Polymer. Chem., 3 (2):479–485 (2012).
[29] ThakurA.K., Choudhary R.B., Majumder M., Majhi M., Fairly Improved Pseudocapacitance of PTP/PANI/TiO2 Nanohybrid Composite Electrode Material for Supercapacitor, Ionics., 24: 257–268 (2018).
[30] Senthilkumar B.,Thenamirtham P., KalaiSelvan R., Structural and Electrochemical Properties of Polythiophene, Appl. Surf. Sci., 257: 9063-9067 (2011).
[31] Richard D., McCullough., The Chemistry of Conducting Polythiophenes, Adv. Mater.,10(2): 93-116 (1998).
[32] Pringle J.M., Forsyth M., MacFarlane D.R., Wagner K.S., Hall SB., Officer DL., The Influence of the Monomer and the Ionic Liquid on the Electrochemical Preparation of Polythiophene, Polymer.,46: 2047-2058 (2005).
[33] Gnanakan SRP., Rajasekha M., SubramaniaA., Synthesis of Polythiophene Nanoparticles by Surfactant -Assisted Dilute Polymerization Method for High Performance Redox Supercapacitors, Int. J. Electrochem. Sci., 4: 1289-1301 (2009).
[34] Osterholm AM., Shen DE., Dyer AL., John RR., Optimization of PEDOT Films in Ionic Liquid Supercapacitors: Demonstration As a Power Source for Polymer Electrochromic Devices, ACS. Appl. Mater. Interfaces., 5 (24): 13432-13440 (2013).
[35] Frackowiak E., Khomenko V., Jurewicz K., Lota K., B´eeguin F., Supercapacitors Based on Conducting Polymers/Nanotubes Composite, J. Power. Sources., 153(2): 413 – 418 (2006).
[36] Zhou Y., Qin ZY., Li L., Zhang Y., Wei YL., Wang LF., Zhu M.F., Polyaniline/Multi-Walled Carbon Nanotube Composites with Core–Shell Structures as Supercapacitor Electrode Materials, Electrochim. Acta., 55(12): 3904-3908 (2010).
[37] Laforgue A., Simon P., Sarrazin C., Fauvarque JF., Polythiophene-Based Supercapacitors, J. Power. Sources., 80(1-2): 142-148 (1999).
[38] Karim M.R., Lee C.J., Lee M.S., Synthesis and Characterization of Conducting Polythiophene/Carbon Nanotubes Composites, J Polym Sci Part A: Polym Chem.,44(18): 5283-5290 (2006).
[39] Lu Q., Zhou Y., Synthesis of Mesoporous Polythiophene/MnO2 Nanocomposite and Its Enhanced Pseudocapacitive Properties, J. Power. Sources.,196(8): 4088-4094 (2011).
[40] Zhao J., Xie Y., Le Z., Yu J., Gao Y., Zhong R., Qin Y., Huang Y., Preparation and Characterization
of an Electromagnetic Material: The Graphene Nanosheet/Polythiophene Composite
, Synth. Met., 181: 110-116 (2013).
[41] Alvi F., Ram MK., Basnayaka P., Stefanakos E., Goswami Y., Hoff A., Kumar A., Electrochemical Supercapacitors Based on Graphene-Conducting Polythiophenes Nanocomposite, ECS. Trans., 35(34): 167-174 (2011).
[42] Sayah A., Habelhames F., Bahloul A., Nessark B., Bonnassieux Y., Tendelier D., El Jouad M., Electrochemical Synthesis ofPpolyaniline-Exfoliated   Graphene Composite Films and Their Capacitance Properties, J. Electroanal. Chem., 818: 26-34 (2018).
[43] Liu BN., Luo F., Wu H., Liu Y., Zhang Ch., Chen J., One-Step Ionic-Liquid-Assisted Electrochemical Synthesis of Ionic-Liquid-Functionalized Graphene Sheets Directly from Graphite, Adv. Funct. Mater., 18 (10): 1518–1525 (2008).
[44] Matsumoto M., Saito Y., Park C., Fukushima T., Aida T., Ultrahigh-Throughput Exfoliation of Graphite into Pristine ‘Single-Layer’ Graphene using Microwaves and Molecularly Engineered Ionic Liquids, Nature.Chemistry., 7(9): 730–736 (2015).
[45] Zotti G., Cattarin S., Comisso N., Electrodeposition of Polythiophene, Polypyrrole and Polyaniline by the Cyclic Potential Sweep Method, J. Electroanal. Chem., 235(1-2): 259–273 (1987).
[46] Sasaki K., Kaya M., Yano J., Kitani A., Kunai A., Growth Mechanism in the Electropolymerization of Aniline and p-aminodiphenylamine, J. Electroanal. Chem., 215(1-2): 401–407 (1986).
[47] Zhou EJ., He C., Tan ZA., Yang CH., Li YF., Effect of Side-Chain End Groups on the Optical, Electrochemical, and Photovoltaic Properties of Side-Chain Conjugated Polythiophenes, J. Polym. Sci., 44(16): 4916-4922 (2006).
[48] Hou JH., Tan ZA., Yan Y., He YJ., Yang CH., Li YF., Synthesis and Photovoltaic Properties of Two-Dimensional Conjugated Polythiophenes with Bi (thienylenevinylene) Side Chains, J. Am. Chem. Soc. 128(14): 4911-4916 (2006).
[49] Hou JH., Huo LJ.,  He C.,  Yang CH., Li YF., Synthesis and Absorption Spectra of Poly(3-(phenylenevinyl) thiophenes)  with Conjugated Side Chains, Macromolecules.,39 (2): 594-603 (2006).
[50] Chang CF., Truong QD., Chen JR., Graphene Sheets Synthesized by Ionic-Liquid-Assisted Electrolysis for Application in Water Purification, Appl. Surf. Sci., 264C: 329–334 (2013).
[52] Tahmasebi E., Yamini Y., Moradi M., Esrafili A., Polythiophene-Coated Fe3O4 Super Paramagnetic Nanocomposite: Synthesis and Application as a New Sorbent for Solid-Phase Extraction, Anal. Chim. Acta., 770: 68-74 (2013).
[54] Guo XZ.,  Kang YF., Yang TL., Wang SR., Nonferr T., Low-Temperature NO2 Sensors Based on Polythiophene/WO3 Organic-Inorganic Hybrids, Metal .Soc., 22(2): 380-385 (2012).
[55] Zhu Y.,Xu S., Jiang L., Pan K., Dan Y., Synthesis and Characterization of Polythiophene/Titanium Dioxide Composite, React. Funct. Polym., 68(10): 1492-1498 (2008).
[56] Karim MR., Lim KT., Lee CJ., Lee MS., A Facile Synthesis of Polythiophene Nanowires, Synth Met.,157 (22-23): 1008-1012 (2007).