Theoretical Study of the Molecular Complexes between Pyridyne and Acid Sites of Zeolites

Document Type: Research Article

Authors

Department of Chemistry, Shahid Bahonar University of Kerman, Kerman, I.R. IRAN

Abstract

The main interaction between pyridine and zeolites leads to form a hydrogen bond between the N atom of pyridine and OH groups of zeolites. The present work reports a theoretical study about the structural, vibrational and topological properties of the charge distribution of the molecular complexes between pyridine and a series of acids sites of zeolites. The calculated structural parameters are the highest occupied molecular orbital energy (EHOMO), lowest unoccupied molecular orbital energy (ELUMO), energy gap (ΔE), hardness (η), softness (S), the absolute electronegativity (χ), the electrophilicity index (ω) and the fractions of electrons transferred (ΔN) from zeolites molecules to pyridine. We show N atom of pyridine attacks to the H atom of the OH bridged group of zeolite clusters.

Keywords

Main Subjects


[1] Bakke J. M., Nitropyridines: Synthesis and Reactions, Pure Appl. Chem., 75 (10): 1403-1415 (2003).

[2] Badgujar D.M., Talawar M.B., Asthana S.N., Mahulikar P.P., Studies of Antimicrobial Activity of Picryl Amino Pyridine N-Oxid, Pharmaceutical and Agrochemical Compounds, Indian J. Chem, 49B:1675-1677 (2010).

[3] Joshaghani M., Sotodehnejad M., Potentiometric Study of Complex Formation between Some Transition Metal Ions and 2 - Aminopyridine, Part 1. A Model for Therapeutic Agent for Wilson’s Disease, Iranian Journal of Chemistry & Chemical Engineering (IJCCE), 22(2): 17-21 (2003).

[4] Gur'yanova E.N., Gol'dshtein I.P., Perepelkova T.I., The Polarity and Strength of the Intermolecular Hydrogen Bond, Rus. Chem. Rev., 45 (9):792-806 (1976).

[5] Corma A., Solid Acid Catalysts, Curr. Opin. Solid State Mater. Sci., 2 (1): 63-75 (1997).

[6] Vansant E.F. J., Molecular Engineering of Oxides and Zeolites, Mol. Catal. A: Chem, 115 (3): 379–387 (1997).

[7] Holm M.S., Taarning E., Egeblad K., Christensen C.H., Catalysis with Hierarchical Zeolites, Catal. Today, 168 (1): 3-16 (2011).

[8] Chen C., Cheng T., Shi Y., Tian Y., Adsorption of Cu(II) from Aqueous Solution on Fly Ash Based Linde F (K) Zeolite, Iranian Journal of Chemistry & Chemical Engineering (IJCCE), 33 (3): 29-35 (2014).

[9] Sistani S., Ehsani MR., Kazemian H., Microwave Assisted Synthesis of Nano Zeolite Seed for Synthesis Membrane and Investigation of its Permeation Properties for H2 Separation, Iranian Journal of Chemistry & Chemical Engineering (IJCCE), 29 (4): 99-104 ( 2010).

[10] Yousefpour M., Modelling of Adsorption of Zinc and Silver Ions on Analcime and Modified Analcime Zeolites Using Central Composite Design, Iranian Journal of Chemistry & Chemical Engineering (IJCCE), 36 (4): 81-90 ( 2017).

[12] Soscún H., Hernández J., Castellano O., Diaz G., Hinchliffe A., Ab Initio SCF- MO Study of the Topology of the Charge Distribution of Acid Sites of Zeolites, Int. J. Quantum Chem., 70: 951–960 (1998).

[13] Zeidabadinejad L., Dehestani M., Pourestarabadi S., On the Chemical Bonding Features in Palladium Containing Compounds: A Combined QTAIM/DFT Topological Analysis, J. Struct. Chem., 58: 471–478 (2017).

[14] Mousavi Fard B., Zeidabadinejad L., Pourastarabadi S., Dehestani M., Investigation of Interaction of Vanillin with Alpha, Beta and Gamma-Cyclodextrin as Drug Delivery Carriers: Brief Report, Tehran Univ Med J, 73(2): 132-137 (2015).

[17] Dehestani M., Zeidabadinejad L., Pourestarabadi S., QTAIM Investigations of Decorated Graphyne and Boron Nitride for Li Detection, J. Serb. Chem. Soc., 82(3): 289-301 (2017).

[18] Hehre W.J., Radom L., Schleyer P.V.R., Pople J., “Ab initio Molecular Orbital Theory”, New York, Wiley-Interscience, (1986).

[19] Parr R.G., Yang W. “Density Functional Theory of Atoms and Molecules”, New York, Oxford University Press, (1989).

[20] Bader R.F.W., “Atoms in Molecules: A Quantum Theory”, Oxford University Press, Oxford, (1990).

[21] Cioslowski J., Stefanov B.B., Variational Determination of the Zero-Flux Surfaces of Atoms in Molecules, Mol. Phys., 84 (4): 707-716 (1995).

[22] Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Montgomery J.A., Vreven T.Jr., Kudin K.N., Burant J.C., Millam J.M., Iyengar S.S., Tomasi J., Barone V., Mennucci B., Cossi M., Scalmani G., Rega N., Petersson G.A., Nakatsuji H., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Klene M., Li X., Knox J.E., Hratchian H.P., Cross J.B., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Ayala P.Y., Morokuma K., Voth G.A., Salvador P., Dannenberg J.J., Zakrzewski V.G., Dapprich S., Daniels A.D., Strain M.C., Farkas O., Malick D.K., Rabuck A.D., Raghavachari K., Foresman J.B., Ortiz J.V., Cui Q., Baboul A.G., Clifford S., Cioslowski J., Stefanov B.B., Liu G., Liashenko A., Piskorz P., Komaromi I., Martin R.L., Fox D.J., Keith T., Al-Laham M.A., Peng C.Y., Nanayakkara A., Challacombe M., Gill M.W.P., Johnson B., Chen W., Wong M.W., Gonzalez C., Pople J.A., Gaussian 03, Revision B.02, Gaussian, Inc., Pittsburgh PA (2004).

[23] Foroutan-Nejad C., Shahbazian S., Marek R., Toward a Consistent Interpretation of the QTAIM: Tortuous Link between Chemical Bonds, Interactions, and Bond/Line Paths, Chem. Eur. J., 20(32): 10140- 10152 (2014).

[24] Lu T., Chen F., Multiwfn: a Multifunctional Wavefunction Analyzer, J. Comput. Chem., 33 (5): 580-592 (2012).

[25] Mata F., Quintana M.J., Sorensen G.O., Microwave Spectra of Pyridine and Monodeuterated Pyridines. Revised Molecular Structure of Pyridine, J. Mol. Struct., 42: 1–5 (1977).

[26] Szafran M., Koput J., Ab Initio and DFT Calculations of Structure and Vibrational Spectra of Pyridine and Its Isotopomers, J. Mol. Struct., 565: 439-448 (2002).

[27] Garcia C.L., Lercher J.A., Adsorption and Surface Reactions of Thiophene on ZSM 5 Zeolites, J. Phys. Chem., 96 (6): 2669–2675 (1992).

[29] Parr R.G., Pearson R.G., Absolute Hardness: Companion Parameter to Absolute Electronegativity, J. Am. Chem. Soc., 105 (26): 7512–7516 (1983).

[29] Geerlings P., De Proft F., Langenaeker W., Conceptual Density Functional Theory, Chem. Rev., 103 (5): 1793–1873 (2003).

[30] Parr R.G., Szentpály L., Liu S., Electrophilicity Index, J. Am. Chem. Soc., 121 (9): 1922–1924 (1999).

[31] Padmanabhan J., Parthasarathi R., Subramanian V., Chattaraj P.K., Electrophilicity-Based Charge Transfer Descriptor, J. Phys. Chem. A., 111 (7): 1358–1361 (2007).

[32] Bray S.J., Johnson W.A., Hirsh J., Heberlein U., Tjian R., A Cis-Acting Element and Associated Binding Factor Required for CNS Expression of the Drosophila Melanogaster Dopa Decarboxylase Gene, EMBO. J., 7 (1): 177-188 (1988).

[33] Ayers P.W., Levy M., Perspective on Density Functional Approach to the Frontier-Electron Theory of Chemical Reactivity, Theor. Chem. Acc., 103 (1): 353–360 (2000).

[34] Yang W., Mortier W.J., The Use of Global and Local Molecular Parameters for the Analysis of the Gas-Phase Basicity of Amines, J. Am. Chem. Soc., 108 (19): 5708–5711 (1986).