Electrosynthesized Reduced Graphene Oxide-Supported Platinum, Platinum-Copper and Platinum-Nickel Nanoparticles on Carbon-Ceramic Electrode for Electrocatalytic Oxidation of Ethanol in Acidic Media

Document Type: Research Article

Authors

Electroanalytical Chemistry Laboratory, Department of Chemistry, Faculty of Sciences, Azarbaijan Shahid Madani University, P.O. Box 53714-161 Tabriz, I.R. IRAN

Abstract

In this work, the electrocatalytic oxidation of ethanol was studied in acidic media at the wholly electrosynthesized nanocomposites: platinum and its alloys (copper and nickel) anoparticles/reduced graphene oxide on the carbon-ceramic electrode (Pt/rGO/CCE, Pt-Cu/rGO/CCE, and Pt-Ni/rGO/CCE electrocatalysts). The electrosynthesized nanocomposites were characterized by scanning electron microscopy, X-ray powder diffraction, and energy-dispersive X-ray spectroscopy. Electrocatalytic activities of the Pt/rGO/CCE, Pt-Cu/rGO/CCE and Pt-Ni/rGO/CCE toward ethanol oxidation were investigated via cyclic voltammetric and chronoamperometric techniques in 0.1 M H2SO4 solution containing 0.3 M ethanol. The obtained results show that the Pt-Ni/rGO/CCE was catalytically more active and exhibits better electrocatalytic performance toward ethanol oxidation (ECSA=25.28, Jpf=0.156 mA/cm2, Jpf/Jpb=1.12 and Eonset=0.2 V) than Pt-Cu/rGO/CCE (ECSA=19.09, Jpf=0.108 mA/cm2, Jpf/Jpb=0.99 and Eonset=0.3 V) and Pt/rGO/CCE (ECSA=28.28, Jpf=0.092 mA/cm2, Jpf/Jpb=0.55 and Eonset=0.35 V). The result of some effective and important investigational factors was studied and optimize conditions were suggested. Based on the obtained data one can be expected that the studied systems are promising systems for ethanol fuel cell applications.

Keywords

Main Subjects


[1] Srinivasan S., Manko D.J., Koch H., Enayetullah M.A., Appleby A.J., Recent Advances in Solid Polymer Electrolyte Fuel Cell Technology with Low Platinum Loading Electrodes, J. Power Sources, 29: 367-387 (1990).

[2] Naddaf E., Abedi M.R., Zabihi M.S., Imani A., Electrocatalytic Oxidation of Ethanol and Ethylene Glycol onto Poly (o-Anisidine)-Nickel Composite Electrode, Iran. J. Chem. Chem. Eng. (IJCCE), 36: 59-70 (2017).

[3] Johansson B., Security Aspects of Future Renewable Energy Systems-A Short Overview, Energy, 61: 598-605 (2013).

[4] Owusu P.A., Asumadu-Sarkodie S., A Review of Renewable Energy Sources, Sustainability Issues and Climate Change Mitigation, Cogent Engineering, 3: 1167990 (2016).

[5] Ong B.C., Kamarudin S.K., Basri S, Direct Liquid Fuel Cells: A Review, Int. J. Hydrogen Energy, 42:10142-10157(2017).

[7] Zalc J., Sokolovskii V., Löffler D., Are Noble metal-Based Water–Gas Shift Catalysts Practical for Automotive Fuel Processing?, J. Catal., 206: 169-171 (2002).

[8] Maya-Cornejo J., Garcia-Bernabé A., Compañ V., Bimetallic Pt-M Electrocatalysts Supported on Single-Wall Carbon Nanotubes for Hydrogen and Methanol Electrooxidation in Fuel Cells Applications, Int. J. Hydrogen Energy, 43: 872-884 (2018).

[9] Osmieri L.,Escudero-Cid R., Monteverde Videla A.H.A.,Ocón P., Specchia S., Application of a Non-Noble Fe-N-C Catalyst for Oxygen Reduction Reaction in an Alkaline Direct Ethanol Fuel Cell, Renewable Energy, 115: 226-237(2018).

[10] Zhou W.J., Hou B.Z., Zli W.,  Hzhou Z., Qsong S., Sun G.Q., Xin Q., Mgoula S., Tsiakaras P., Performance Comparison of Low-Temperature Direct Alcohol Fuel Cells with Different Anode CatalystsJ. Power Sources, 126:16-22 (2004).

[11] Mann J., Yao N., Bocarsly A.B., Characterization and Analysis of New Catalysts for a Direct
Ethanol Fuel Cell
, Langmuir, 22: 10432-10436 (2006).

[12] Edenhofer O., Pichs-Madruga R., Sokona Y., Seyboth K., Kadner S., Zwickel T., Eickemeier P., Hansen G., Schlömer S., Stechow von. C., "Renewable Energy Sources and Climate Change Mitigation: Special Report of the Intergovernmental Panel on Climate Change", Cambridge University Press (2011).

[15] Eshghi A., Kheirmend M., Surface Modification of Glassy Carbon Electrode by Ni-Cu Nanoparticles as a Competitive Electrode for Ethanol Electro-oxidation, Iran. J. Chem. Chem. Eng. (IJCCE), 37(5): 1-8 (2018).

[16] Raoof J.-B., Hosseini S.R., Mousavi-Sani S.Z., Improved Hydrogen Evolution on Glassy Carbon Electrode Modified with Novel Pt/Cetyltrimethylammonium Bromide Nanoscale Aggregates, Chin. J. Catal., 36: 216-220 (2015).

[17] Valério Neto E.S., Gomes M.A., Salazar-Banda G.R., Eguiluz K.I.B., Pt and Pt-Rh Nanowires Supported on Carbon and SnO2:Sb Nanoparticles for Ethanol Electrochemical Oxidation in Acidic Media, Int. J. Hydrogen Energy, 43:178-188(2018).

[18] Yan S.-Y., Huang Y.-R., Yang C.-Y., Liu C.-W., Wang J.-H., Wang K.-W., Enhanced Activity of Ethanol Oxidation Reaction on PtM (M=Au, Ag and Sn): The Importance of Oxophilicity and Surface Oxygen Containing Species, Electrochim. Acta, 259: 733-74 1(2018).

[19] Li B., Fan H., Cheng M., Song Y., Li F., Wang X., Wang R., Porous Pt-NiO:X Nanostructures with Ultrasmall Building Blocks and Enhanced Electrocatalytic Activity for the Ethanol Oxidation Reaction, RSC Adv., 8: 698-705 (2018).

[20] Sulaiman J.E., Zhu S., Xing Z., Chang Q., Shao M., Pt-Ni Octahedra as Electrocatalysts for the Ethanol Electro-Oxidation Reaction, ACS Catal. 7: 5134-5141 (2017).

[21] Sedighi M., Rostami A.A., Alizadeh E., Enhanced Electro-Oxidation of Ethanol using Pt-CeO2 Electrocatalyst Prepared by Electrodeposition Technique, Int. J. Hydrogen Energy, 42: 4998-5005 (2017).

[22] Zhang B.-W., Sheng T., Wang Y.-X., Qu X.-M., Zhang J.-M., Zhang Z.-C., Liao H.-G., Zhu F.-C., Dou S.-X., Jiang Y.-X., Sun S.-G., Platinum-Cobalt Bimetallic Nanoparticles with Pt Skin for Electro-Oxidation of Ethanol, ACS Catal., 7: 892-895(2017).

[23] Yang W.-H., Zhang Q.-H., Wang H.-H., Zhou Z.-Y., Sun S.-G., Preparation and Utilization of a
Sub-5 nm PbO2 Colloid as an Excellent co-Catalyst for Pt-Based Catalysts Toward Ethanol
Electro-Oxidation
, New J. Chem., 41: 12123-12130 (2017).

[24] Sánchez-Monreal J., García-Salaberri P.A., Vera M., A Genetically Optimized Kinetic Model for Ethanol Electro-Oxidation on Pt-Based Binary Catalysts used in Direct Ehanol Fuel Cells, J. Power Sources, 363: 341-355 (2017). 

[25] Gu X., Wang C., Yang L., Yang C., 3D Porous PtAg Nanotubes for Ethanol Electro-Oxidation, J. Nanosci. Nanotech, 17:2843-2847(2017).

[26] Song H., Luo M., Qiu X., Cao G., Insights Into the Endurance Promotion of PtSn/CNT Catalysts by Thermal Annealing for Ethanol Electro-Oxidation, Electrochim. Acta, 213:578-586(2016).

[27] Momeni M.M., Nazari Z., Electrodeposited Platinum Nanostructure Films on the Tantalum for Ethanol Electro-Oxidation, Surf. Eng., 32: 356-362(2016).

[28] Mikhailova A.A., Pasynskii A.A., Grinberg V.A., Velikodnyi Yu.A., Khazova O.A., CO and Methanol Oxidation at Platinum-tin Electrodes, Russ. J. Electrochem., 46: 26-33 (2010).

[29] Wang H., Jusys Z., Behm R., Ethanol Electrooxidation on a Carbon-Supported Pt Catalyst: Reaction Kinetics and Product Yields, J. Phy. Chem. B., 108:19413-19424(2004).

[30] Yoshitake T., Shimakawa Y., Kuroshima S., Kimura H., Ichihashi T., Kubo Y., Kasuya D., Takahashi K., Kokai F., Yudasaka M., Preparation of Fine Platinum Catalyst Supported on Single-Wall Carbon Nanohorns for Fuel Cell Application, Physica B Condens. Matter, 323: 124-126 (2002).

[32] Xu C., Cheng L., Shen P., Liu Y., Methanol and Ethanol Electrooxidation on Pt and Pd Supported
on Carbon Microspheres in Alkaline Media
, Electrochem. Commun., 9: 997-1001 (2007).

[34] Kanninen P., Luong N.D., Sinh L.H., Flórez-Montaño J., Jiang H., Pastor E., Seppälä J.,
Kallio T., Highly Active Platinum Nanoparticles Supported by Nitrogen/Sulfur Functionalized Graphene Composite for Ethanol Electro-Oxidation, Electrochim. Acta 242:315-326(2017).

[35] Samuei S., Fakkar J., Rezvani Z., Shomali A., Habibi B., Synthesis and Characterization of Graphene Quantum Dots/CoNiAllayered Double-Hydroxide Nanocomposite: Application as a Glucose Sensor, Anal. Biochem. 521: 31-39 (2017).

[36] Kakaei K., Decoration of Graphene Oxide with Platinum Tin Nanoparticles for Ethanol Oxidation, Electrochim. Acta 165: 330-337 (2015).

[37] Kumar R., da Silva E.T.S.G., Singh R.K., Savu R., Alaferdov A.V., Fonseca L.C., Carossi L.C., Singh A., Khandka S., Kar K.K., Alves O.L., Kubota L.T., Moshkalev S.A., Microwave-Assisted Synthesis of Palladium Nanoparticles Intercalated Nitrogen Doped Reduced Graphene Oxide and Their Electrocatalytic Activity for Direct-Ethanol Fuel Cells, J. Colloid Interface Sci., 515:160-171 (2018).

[38] Arabzadeh A., Salimi A., Ashrafi M., Soltanian S., Servati P., Enhanced Visible Light Driven Photoelectrocatalytic Oxidation of Ethanol at Reduced Graphene Oxide/CdS Nanowires Decorated with Pt Nanoparticles, Catal. Sci. Technol., 6: 3485-3496 (2016).

[39] Maya-Cornejo J., Carrera-Cerritos R., Sebastián D., Ledesma-García J., Arriaga L.G., Aricò A.S.,
Baglio V., PtCu Catalyst for the Electro-Oxidation of Ethanol in an Alkaline Direct Alcohol Fuel Cell, Int. J. Hydrogen Energy, 42:27919-27928(2017).

 [40] Wu G., Chen Y.-S., Xu B.-Q., Remarkable Support Effect of SWNTs in Pt Catalyst for Methanol Electrooxidation, Electrochem. Commun., 7: 1237-1243 (2005).

[41] Sebastián D., Calderón J., González-Expósito J., Pastor E., Martínez-Huerta M., Suelves I., Moliner R., Lázaro M., Influence of Carbon Nanofiber Properties as Electrocatalyst Support on the Electrochemical Performance for PEM Fuel Cells, Int. J. Hydrogen Energy, 35: 9934-9942 (2010).

 [42] Solar J., Derbyshire F., De Beer V., Radovic L., Effects of Surface and Structural Properties of Carbons on the Behavior of Carbon-Supported Molybdenum Catalysts, J. Catal., 129: 330-342 (1991).

[43] Solar J., Leon C.L., Osseo-Asare K., Radovic L., On the Importance of the Electrokinetic Properties of Carbons for Their Use as Catalyst Supports, Carbon, 28: 369-375(1990).

[44] Fraga M., Jordao E., Mendes M., Freitas M., Faria J., Figueiredo J., Properties of Carbon-Supported Platinum Catalysts: Role of Carbon Surface Sites, J. Catal. 209:355-364(2002).

[45] Novoselov K., Geim A., The Rise of Graphene, Nat. Mater., 6:183-191(2007).

[46] Stankovich S., Dikin D.A., Dommett G.H., Kohlhaas K.M., Zimney E.J., Stach E.A., Piner R.D., Nguyen S.T., Ruoff R.S., Graphene-Based Composite Materials, Nature 442:282-286(2006).

[47] Li L., Wu Y., Lu J., Nan C., Li Y., Synthesis of Pt-Ni/Graphene via in Situ Reduction and Its Enhanced Catalyst Activity for Methanol Oxidation, Chem. Commun. 49:7486-7488(2013).

[48] Suh W.-k., Ganesan P., Son B., Kim H., Shanmugam S., Graphene Supported Pt-Ni Nanoparticles for Oxygen Reduction Reaction in Acidic Electrolyte, Int. J. Hydrogen Energy 41: 12983-12994 (2016).

[49] Ghasemi S., Hosseini S.R., Kazemi Z., Electrochemical Deposition of Pt-Ni on Reduced Graphene Oxide as Counter Electrode Material for Dye-Sensitized Solar Cell, J. Photochem. Photobiol.A:Chemistry 348: 263-268 (2017).

[50] Zhao F., Kong W., Hu Z., Liu J., Zhao Y., Zhang B., Tuning the Performance of Pt-Ni Alloy/Reduced Graphene Oxide Catalysts for 4-Nitrophenol Reduction, RSC Adv. 6:79028-79036(2016).

[52] Yoo E., Okata T., Akita T., Kohyama M., Nakamura J., Honma I., Enhanced Electrocatalytic Activity of Pt Subnanoclusters on Graphene Nanosheet Surface, Nano Letters., 9: 2255-2259 (2009).

[53]  Dong L., Gari R.R.S., Li Z., Craig M.M., Hou S., Graphene-Supported Platinum and Platinum-Ruthenium Nanoparticles with High Electrocatalytic Activity for Methanol and Ethanol Oxidation, Carbon, 48: 781-787 (2010).

[54] Das D., Basumallick I., Ghosh S., Methanol and Ethanol Electro-oxidation on to Platinum Loaded Reduced Graphene Oxide Surface for Fuel Cell Application, Br. J. Appl. Sci. Technol., 7: 630-641 (2015).

[56] Qian W., Hao R., Zhou J., Eastman M., Manhat B.A., Sun Q., Goforth A.M., Jiao J., Exfoliated Graphene-Supported Pt and Pt-Based Alloys as Electrocatalysts for Direct Methanol Fuel Cells, Carbon, 52: 595-604 (2013).

[57] Zhou Y.-G., Chen J.-J., Wang F.-b., Sheng Z.-H., Xia X.-H., A Facile Approach to the Synthesis of Highly Electroactive Pt Nanoparticles on Graphene as an Anode Catalyst for Direct Methanol Fuel Cell, Chem. Commun., 46: 5951-5953 (2010).

[61] Li F., Guo Y., Chen M., Qiu H., Sun X., Wang W., Liu Y., Gao J., Comparison study of Electrocatalytic Activity of Reduced Graphene Oxide Supported Pt-Cu Bimetallic or Pt Nanoparticles for the Electrooxidation of Methanol and Ethanol, Int. J. Hydrogen Energy, 38:14242-14249 (2013).

[63] Hummers Jr W.S., Offeman R.E., Preparation of Graphitic Oxide, J. Am. Chem. Soc., 80: 1339-1339 (1958).

[64] Chen L., Tang Y., Wang K., Liu C., Luo S., Direct Electrodeposition of Reduced Graphene Oxide on Glassy Carbon Electrode and Its Electrochemical Application, Electrochem. Commun., 13: 133-137 (2011).

[65] Habibi B., Delnavaz N., Carbon-Ceramic Supported Bimetallic Pt-Ni Nanoparticles as an Electrocatalyst for Oxidation of Formic Acid, Int. J. Hydrogen Energy, 36: 9581-9590 (2011).

[67] Almeida T.S., KokohK.B., AndradeA.R.De, Effect of Ni on Pt/C and PtSn/C Prepared by the Pechini Method, Int. J. Hydrogen Energy, 36: 3803-3810 (2011).

[68] Arul Dhas N., Paul Raj C., Gedanken A., Synthesis, Characterization, and Properties of Metallic Copper Nanoparticles, Chem. Mater., 105: 1446-1452 (1998).

[69] Wang Z., Du Y., Zhang F., Zheng Z., Zhang Y., Wang C., High Electrocatalytic Activity of Non-Noble Ni-Co/Graphene Catalyst for Direct Ethanol Fuel Cells, J. Solid State Electrochem., 17: 99-107 (2013).

[71] Trasatti S., Petrii O., Real Surface Area Measurements in Electrochemistry, J. Electroanal. Chem., 327: 353-376 (1992).

[72] Croissant M., Napporn T., Léger J.-M., Lamy C., Electrocatalytic Oxidation of Hydrogen at Platinum-Modified Polyaniline Electrodes, Electrochim. Acta, 43: 2447-2457 (1998).

[73] De Souza J., Queiroz S., Bergamaski K., Gonzalez E., Nart F., Electro-Oxidation of Ethanol on Pt, Rh, and PtRh Electrodes. A Study Using DEMS and In-Situ FTIR Techniques, J. Phys. Chem. B., 106: 9825-9830 (2002).

[74] Iwasita T., Rasch B., Cattaneo E., Vielstich W., A Sniftirs Study of Ethanol Oxidation on Platinum, Electrochim. Acta, 34: 1073-1079 (1989).

[75] Razmi H., Habibi E., Heidari H., Electrocatalytic Oxidation of Methanol and Ethanol at Carbon Ceramic Electrode Modified with Platinum Nanoparticles, Electrochim. Acta, 53: 8178-8185 (2008).

[76] Lamy C., Belgsir E., Leger J., Electrocatalytic Oxidation of Aliphatic Alcohols: Application
to the Direct Alcohol Fuel Cell (DAFC)
, J. Appl. Electrochem., 31: 799-809 (2001).

[77] Hitmi H., Belgsir E., Léger J.-M., Lamy C., Lezna R., A Kinetic Analysis of the Electro-Oxidation
of Ethanol at a Platinum Electrode in Acid Medium
, Electrochim. Acta, 39: 407-415 (1994).

[79] Ren F., Wang H., Zhai C., Zhu M., Yue R., Du Y., Yang P., Xu J., Lu W., Clean Method for
the Synthesis of Reduced Graphene Oxide-Supported PtPd Alloys with High Electrocatalytic Activity
for Ethanol Oxidation in Alkaline Medium
, ACS Appl. Mater. Interfaces, 6: 3607-3614 (2014).

[80] Bin D., Ren F., Wang H., Zhang K., Yang B., Zhai C., Zhu M., Yang P., Du Y., Facile Synthesis of PVP-Assisted PtRu/RGO Nanocomposites with High Electrocatalytic Performance for Methanol Oxidation, RSC Adv., 4: 39612-39618 (2014).