Citric Acid Removal from Aqueous Solution with Layered Aluminum Hydroxide Crystals

Document Type: Research Article

Authors

1 Facultad de Ciencias Aplicadas a la Industria. Universidad de Camagüey “Ignacio Agramonte Loynaz”. Circunvalación Norte, km 5.5. C.P. 74650. Camagüey, CUBA

2 Departamento de Química, Universidad de Guadalajara, Marcelino García Barragán 1421. C.P. 44430, Guadalajara, Jalisco, MÉXICO

3 Departamento de Ingeniería Química. Universidad Central “Martha Abreu de Las Villas”, Carretera Camajuaní km 7.5, Santa Clara, CUBA

4 Departamento de Química, Facultad de Ciencias. Universidad de las Islas Baleares. Carretera Valldemossa km 7.5 Palma de Mallorca. ESPAÑA

Abstract

Aluminum hydroxide is a compound with diverse crystalline structures, some of which demonstrate the ability to remove chemicals from aqueous solutions. In this research, aluminum hydroxide with the Bayerite structure was synthesized and used to remove Citric Acid (CA). This structure was not modified under the reaction conditions where CA ranged from 2 to 6 mg of CA in 20 mL of water, the temperature ranged from 30 to 90 °C, and time ranged from 8 to 24 h. The constants in the Freundlich model indicated that adsorption is the phenomenon governing the CA capture by aluminum hydroxide. According to infrared spectroscopy data, adsorption of CA was produced by the hydrogen bond of hydroxyl groups in aluminum hydroxide with either carboxylate or carboxylic groups in CA. The highest removal of CA was 92.12% and the temperature was the only factor with an effect on the percentage of CA removal.

Keywords

Main Subjects


[1] Kamali M., Ghorashi S.A.A., Asadollahi M.A., Controllable Synthesis of Silver Nanoparticles Using Citrate as Complexing Agent: Characterization of Nanopartciles and Effect of pH on Size and Crystallinity, Iran. J. Chem. Chem. Eng. (IJCCE), 31(4): 21–28 (2012).

[2] Alaei M., Rashidi A., Mahjoub A., Two Suitable Methods for the Preparation of Inorganic Fullerene-Like (IF) WS2 Nanoparticles, Iran. J. Chem. Chem., Eng. (IJCCE), 28(2): 91–98 (2009).

[3] Kudzai C.T., Ajay K., Ambika P., Citric Acid Production by Aspergillus Niger Using Different Substrates. Malays, J. Microbiol., 12(3): 199–204 (2016).

[4] Boriová K., Urík M., Bujdoš M., Pifková I., Matúš P., Chemical Mimicking of Bio-Assisted Aluminium Extraction by Aspergillus Niger’s Exometabolites, Environ. Pollut., 218: 281–288 (2016).

[6] Zhang Y.-X.; Jia Y., Fluoride Adsorption onto Amorphous Aluminum Hydroxide: Roles of the Surface Acetate Anions, J. Colloid Interface Sci., 483(1): 295–306 (2016).

[7] Ganvir V., Das K., Removal of Fluoride from Drinking Water Using Aluminum Hydroxide Coated Rice Husk Ash, J. Hazard. Mater., 185(2–3): 1287–1294 (2011).

[8] Chen G., Peng C., Fang J., Dong Y., Zhu X., Cai H., Biosorption of Fluoride from Drinking Water Using Spent Mushroom Compost Biochar Coated with Aluminum Hydroxide, Desalin. Water Treat., 57(26): 12385–12395 (2016).

[9] Barathi M., Kumar A.S.K., Rajesh N., Aluminium Hydroxide Impregnated Macroreticular Aromatic Polymeric Resin as a Sustainable Option for Defluoridation, J. Environ. Chem. Eng., 3: 630–641 (2015).

[10] Liu R., Ju J., He Z., Hu C., Liu H., Qu J., Utilization of Annealed Aluminum Hydroxide Waste with Incorporated Fluoride for Adsorptive Removal of Heavy Metals, Colloids Surfaces A Physicochem. Eng. Asp., 504: 95–104 (2016).

[14] Demichelis R., Civalleri B., Noel Y., Meyer A., Dovesi R., Structure and Stability of Aluminium Trihydroxides Bayerite and Gibbsite: A Quantum Mechanical Ab Initio Study with the Crystal06 Code. Chem. Phys. Lett., 465(4–6): 220–225 (2008).

[15] Vitaly P. Isupov, Lyudmila E. Chupakhina, Raisa P. Mitrofanova, K. A. T., Synthesis, Structure, Properties, and Application of Aluminium Hydroxide Intercalation Compounds, Chem. Sustain. Dev., 8: 121–127 (2000).

[16] Liu X., Qiu G., Zhao Y., Zhang N., Yi R., Gallium Oxide Nanorods by the Conversion of Gallium Oxide Hydroxide Nanorods, J. Alloys Compd., 439(1–2): 275–278 (2007).

[17] Lee I., Kwak J., Haam S., Lee S.Y., Dipeptide-Assisted Growth of Uniform Gallium Oxohydroxide Spindles, J. Cryst. Growth, 312(14): 2107–2112 (2010).

[18] Wypych F., Arízaga G.G.C.,da Costa Gardolinski J.E.F., Intercalation and Functionalization of Zinc Hydroxide Nitrate with Mono- and Dicarboxylic Acids, J. Colloid Interface Sci., 283(1): 130–138 (2005).

[19] Arizaga G.G.C., Mangrich A.S., da Costa Gardolinski J.E.F., Wypych F., Chemical Modification of Zinc Hydroxide Nitrate and Zn-Al-Layered Double Hydroxide with Dicarboxylic Acids, J. Colloid Interface Sci., 320(1): 168–176 (2008).

[20] Reddy L.S., Ko Y.H., Yu J.S., Hydrothermal Synthesis and Photocatalytic Property of β-Ga2O3 Nanorods, Nanoscale Res. Lett., 10(1): 364 (2015).

[21] Azeredo H.M.C., Kontou-Vrettou C., Moates G.K., Wellner N., Cross K., Pereira P.H.F., Waldron K.W., Wheat Straw Hemicellulose Films as Affected by Citric Acid, Food Hydrocoll., 50:1–6 (2015).