Theoretical Study of 1,4-Dioxane in Aqueous Solution and Its Experimental Interaction with Nano-CuSO4

Document Type: Research Article

Authors

1 Department of Chemistry, Faculty of Education, Ain Shams University, Roxy 11711, Cairo, EGYPT

2 Department of Chemistry, Faculty of Education, Ain Shams University, Roxy 11711, Cairo, Egypt

3 Department of Chemistry, Faculty of Science, Mansoura, University, Mansoura, EGYPT

Abstract

The electronic structure, Non-Linear Optical (NLO) properties and Natural Bonding Orbital (NBO) analysis of 1,4-dioxane were investigated using the theoretical study of Density Functional Theory (DFT) calculations at the B3LYP/6-311G (d,p) level of theory. The optimized structure is nonlinear as indicated from the dihedral angles.  Natural bonding orbital analysis has been analyzed in terms of the hybridization of each atom, natural charges (Core, Valence and Rydberg), bonding and antibonding orbital's second order perturbation energy (E(2)). The calculated EHOMO and ELUMO energies of the title molecule can be used to explain the charge transfer in the molecule and to calculate the global properties; the chemical hardness (η), softness (S) and electronegativity (χ). The NLO parameters: static dipole moment (µ), polarizability (α), anisotropy polarizability (Δα) and first order hyperpolarizability (βtot) of the studied molecule have been calculated at the same level of theory. The Molecular Electrostatic Potential (MEP) and  Electro Static Potential (ESP) for 1,4-dioxane were investigated and analyzed.  Also, the electronic absorption spectra were discussed by Time-Dependent Density Functional Theory (TD-DFT) calculations for 1,4-dioxane in 10% ethanol/water. From the experimental conductance measurements, the association thermodynamic parameters (KA, ∆GA, ∆HA and ∆SA) and complex formation thermodynamic parameters (Kf, ∆Gf, ∆Hf and ∆Sf) of nano-CuSO4 in the presence of 1,4-dioxane as a ligand in 10% ethanol-water at different temperatures (298.15, 303.15, 308.15 and 313.15 oK) were applied and calculated.

Keywords

Main Subjects


[1] Eusebio Juarist,, Giselle A. Rosquete-Pina, Maribel Vázquez-Hernández, Antonio J. Mota, Salt Effects on the Conformational Behavior of 5-substituted 1,3-dioxanes, Pure Appl. Chem., 75: 589-620 (2003).

[2] Bushweller, C. H., “Stereochemistry of Cyclohexane and Substituted Cyclohexanes. Substituted A Values in Conformational Behavior of Six-Membered Ring Analysis, Dynamics and Stereoelectronic Effects”, Juaristi, E., (Ed.); VHC/Wiley: New York, Chapter 2 (1995).

[3] Wiberg K.B., Hammer J.D., Castejon H., Bailey W.F., DeLeon E.L., Jarret R.M., Conformational Studies
in the Cyclohexane Series. 1. Experimental and Computational Investigation of Methyl, Ethyl, Isopropyl, and Tert-butylcyclohexanes
, J. Org Chem., 64(6): 2085-2095 (1999).

[6] Arnaud-Neu F., Delgado R., Chaves S., Critical Evaluation of Stability Constants and Thermodynamic Functions of Metal Complexes of Crown Ethers, Pure. Appl. Chem., 75: 71-102 (2003).

[7] Wong P.S.H., Antonio B.J., Dearden D.V., Gas-Phase Studies of Valinomycin-Alkali Metal Cation Complexes: Attachment Rates and Cation Affinities., J. Am. Soc. Mass Spectrosc., 5: 632 – 637 (1994).

[8] Andreas T., Tsatsas, Robert W., Stearns, William, Risen M., Nature of Alkali Metal Ion Interactions with Cyclic polyfunctional Molecules. I. Vibrations of Alkali Ions Encaged by Crown Ethers in Solution.,
J. Am. Chem. Soc., 94:  5247- 5253 (1972).

[9] Popov A.I., Lehn J.M., In: Melson G.A. (Ed.), “Coordination Chemistry of Macrocyclic Compounds", Plenum Press, New York, (1979).

[10] Mandal K., Kar T., Nandi P.K., Bhattacharyya S.P., Theoretical Study of the Nonlinear Polarizabilities
in H2N and NO2 Substituted Chromophores Containing Two Hetero Aromatic Rings
, Chem. Phys. Letts., 376: 116-124 (2003).

[12] Prasad P.N., Williams D.J., “Introduction to Nonlinear Optical Effects in Molecules and Polymers”, John Wiley & Sons, Inc., New York, NY, USA (1991).

[14] Foster J.P., Weinhold F., Natural Hybrid Orbitals, J. Am. Chem. Soc., 102: 7211-7218 (1980).

[15] Reed A.E., Curtiss L.A., Weinhold F., Intermolecular Interactions from a Natural Bond Orbital, Donor-Acceptor Viewpoint, Chem. Rev., 88: 899- 926 (1988).

[16] Holleman A.F., Wiberg E., “Inorganic Chemistry”, ISBN 0-12-352651-5, San Diego: Academe. Press. (2001).

[17] David A., “Wright and Pamela Welbourn Environmental Toxicology”, Cambridge University Press, UK (2002).

[18] Abou Elleef. El Sayed M., Gomaa. Esam A., Thermodynamics of solvation for Nano Zinc Oxide in 2 M NH4Cl + Mixed DMF - H2O Solvent at Different Temperature, International Journal of Engineering and Innovative Technology, 2: 121-126 (2013).

[20] (a) Becke A., Density functional Thermochemistry. II. The Role of Exact Exchange, Chem. Phys., 98: 5648-5652 (1993).

     (b) Becke A., Density Functional Thermochemistry. III. The Role of Exact Exchange, Chem. Phys., 98: 1372-1376 (1993).   

[21] Lee C., Yang W., Parr R.G., Development
of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density
, Phys. Rev. B Condens. Matter., 15: 785-789 (1988).

[22] Stefanov B, Liu B.G., Liashenko A., Piskorz P., Komaromi I., Martin R.L., Fox D.J., Keith T.,
Al-Laham M.A., Peng C.Y., Nanayakkara A., Challacombe M., Gill P.M. W., Johnson B., Chen W., Wong M.W., Gonzalez C., Pople J.A., Gaussian, Inc., Pittsburgh PA (2003).

[23] Kuz,min I.V., Solkan V.N., Zhidomirov G.M., Kanzanski V.B., Modling of the Mechanism of One Electron Transfer from the Perylene Molecule to Oxygen Molecule 3O2 in HF Medium., SN Applied Sciences, 52: 192-203 (2011).

[24] Dennington, Keith R., Millam T., Semichem J., GaussView, Version 5 Inc., Shawnee Mission KS (2009).

[26] Avci D., Başoğlu A., Atalay Y., NLO and NBO Analysis of Sarcosine Maleic Acid by Using HF
and B3LYP Calculations, Struct. Chem., 21: 213-219 (2010).

[28] Pearson R.G., Absolute Electronegativity and Hardness Correlated with Molecular Orbital Theory, Proc. Nat. Acad. Sci., 83: 8440 – 8441 (1986).

[29] Chandra A.K., Uchimara T., NLO and NBO Analysis of Sarcosine-Maleic Acid by Using HF and B3LYP Calculations, J. Phy. Chem. A, 105: 3578 – 3582 (2001).

[32] Ives D.J.G., “Chemical Thermodynamics”, University Chemistry, Maconald Technical and Scientific (1971).

[33] Dickenson R.E., Geis I., “Benjamin Chemistry”, W.A., Matter, and the Universe, Inc., USA (1976).

[34] Oswal S.L., Desai J.S., Ijardar S.P., Jain D.M., Studies of Partial Molar Volumes of Alkylamine
in Non-Electrolyte Solvents II. Alkyl Amines in Chloroalkanes at 303.15 and 313.15 K
, J. Mol. Liquids, 144: 108-114 (2009).

[35] Zhang D.E., Zhang X.J., Ni X.M., Zheng H.G., Yang D.D., Synthesis and Characterization of NiFe2O4 Magnetic Nanorods via a PEG-Assisted Route, J. Magn. Mater., 292: 79-82 (2005).

[36] Xia B.Y., Yang P.D., Sun Y.G., One-Dimensional Nanostructures: Synthesis, Characterization, and Applications, Adv. Mater., 15: 353-356 (2003).

 [37] Duan X., Huang Y., Cui Y., Wang J., Lieber CM., Indium Phosphide Nanowires as Building Blocks for Nanoscale Electronic and Optoelectronic Devices, Nature 66-69 (2001).

[38] Hamed Mohamed N.H., Gomaa Esam A., Sanad Sameh G., Thermodynamics of Solvation for Nano Zinc Carbonate in Mixed DMF–H2O Solvents at Different Temperatures, International Journal of Engineering and Innovative Technology (IJEIT), 4: 203 – 207 (2014).

[39] Liu W.J., He W.D., Zhang Z.C., Nanogenerators-from Scientific Discovery to Future Applications,
J. Cryst. Growth., 290: 592-598 (2006).

[40] Marcus Yizahak, Solubility and Solvation in Mixed Solvent Systems, Pure and Applied Chem., 62: 2069 – 2076 (1990).

[41] Chen L., Shen L., Xie A., Zhu J., Wu Z., Yang L., Discovery of Diamond in Eclogite from the Chinese Continental Scientific Drilling Project Main Hole (CCSD-MH) in the Sulu UHPM Belt, Cryst. Res. Technol., 42: 886- 891 (2007). [in Chinese]

[42] Yurii A., Simonov, A. Alexandr, Dvorkin, Marina, S. Fonari, Tadeush, I. Malinowski, Elzbieta Luboch, Andrzej Cygan, Jan F. Biernat, V. Edward, Ganin, Popkov., Investigation of Structural, Thermal and Magnetic Behaviors of Pristine Barium Carbonate Nanoparticles Synthesized by Chemical Co-Precipitation Method, J. Inclusion Phenomena and Molecular Recognition in Chemistry, 15:  79-85 (1993).

[43] Snehalatha M., Ravikumar C., Hubert Joe I., Sekar N., Jayakumar V.S., Vibrational Spectra and Scaled Quantum Chemical Studies of the Structure of Martius Yellow Sodium Saltmonohydrate, Spectrochim. Acta A, 40: 1121-1126 (2009).

[44] James C., Amal A., Raj, Reghunathan R., Joe I.H., Jayakumar V.S., Structural Conformation and Vibrational Spectroscopic Studies of 2, 6‐bis (p‐N, N‐dimethyl benzylidene) Cyclohexanone using Density Functional Theory, J. Raman Spectrosc, 37: 1381- 1392 (2006).

[45] Liu J., Chen Z., Yuan S., Zhejiang J., Study on the Prediction of Visible Absorption Maxima of Azobenzene Compounds, Univ. Sci. B, 6: 584 – 589 (2005).

[46] Rubarani P., Gangadharan S., Sampath Krishnan, Natural Bond Orbital (NBO)Population Analysis of 1-Azanapthalene-8-ol, Acta Physica Polonica A, 125:  18-22 (2014).

[47] Scrocco E., Tomasi J., Interpretation by Means of Electrostatic Molecular Potentials, Advances in Quantum Chemistry, 11: 115-120 (1979).

[48] Luque F.J., López J.M., Orozco M., Electrostatic Interactions of a Solute with a Continuum. A Direct Utilization of ab initio Molecular Potentials for the Prevision of Solvent Effects, Theoret. Chem. Accounts, 103: 343-345 (2000).

[49] Okulik N., Jubert A.H., Theoretical Analysis of the Reactive Sites of Non-Steroidal Anti-Inflammatory Drugs, Int. Elect. J. Mol. Des., 4: 17-30 (2005).

 [50] Politzer P., Murray J.S., The Fundamental Nature and Role of the Electrostatic Potential in Atoms
and Molecules
, Theor. Chem. Acc., 108: 134-142 (2002).

[52] Hansch C., Leo A., Taft R.W., A Survey of Hammett Substituent Constants and Resonance and Field Parameters, Chem. Rev., 91: 165-195 (1991).

[53] Jensen L., Van Duijnen P.T., The First Hyperpolarizability of p-Nitroaniline in 1,4-Dioxane:
A Quantum Mechanical/Molecular Mechanics Study
, J. Chem. Phys., 123 Article ID 074307 (2005).

[54] Sałek P., Vahtras O., Helgaker T., Ågren H., Density-Functional Theory of Linear and Nonlinear Time-Dependent Properties Molecular, J. Chem. Phys., 117: 9630-9635 (2002).

[55] Stähelin M., Burland D.M., Rice J. E., Sign Change of Hyperpolarizabilities of Solvated Water, Chem. Phys. Lett., 191: 245-250 (1992).

[57] Zhang C.R., Chen H.S., Wang G.H., Geometry, Electronic Structure, and Related Properties of Dye Sensitizer: 3,4-bis[1-(carboxymethyl)-3-indolyl]-1H-pyrrole-2,5-dione, Chem. Res. Chin. U, 20: 640-646 (2004).

[58] Sun Y., Chen X., Sun L., Guo X., Lu W., A Monolayer Organic Light-Emitting Diode Using an Organic Dye Salt, Chem. Phys. Lett., 83: 1020-1022 (2003).

[59] Christiansen O., Gauss J., Stanton J.F., Non-Linear Optical Properties of Matter, Chem. Phys. Lett., 305: 51-99 (1999).

[60] Cheng L.T., Tam W., Stevenson S.H., Meredith G.R., Rikken G., Marder S.R., Experimental Investigations of Organic Molecular Nonlinear Optical Polarizabilities. 1. Methods and Results on Benzene and Stilbene Derivatives, J. Phys. Chem., 95: 10631-10643 (1991).

[61] Karna S.P., Prasad P.N., Dupuis M., Nonlinear Optical Properties of Novel Thiophene Derivatives: Experimental and ab initio Time-Dependent Coupled Perturbed Hartree–Fock Studies, J. Chem. Phys., 94: 1171-1179 (1991).

[62] Kaatz P., Donley E.A., Shelton D.P., A Comparison of Molecular Hyperpolarizabilities from Gas and Liquid Phase Measurements, J. Chem. Phys., 108: 849-855 (1998).