Theoretical Study of 1,4-Dioxane in Aqueous Solution and Its Experimental Interaction with Nano-CuSO₄

Ali, Lailla I.; Abdel Halim, Shimaa A.*
Department of Chemistry, Faculty of Education, Ain Shams University, Roxy 11711, Cairo, EGYPT

Gomaa, Esam A.*
Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, EGYPT

Sanad, Sameh G.
Department of Chemistry, Faculty of Education, Ain Shams University, Roxy 11711, Cairo, EGYPT

ABSTRACT: The electronic structure, Non-Linear Optical (NLO) properties and Natural Bonding Orbital (NBO) analysis of 1,4-dioxane were investigated using the theoretical study of Density Functional Theory (DFT) calculations at the B3LYP/6-311G (d,p) level of theory. The optimized structure is nonlinear as indicated from the dihedral angles. Natural bonding orbital analysis has been analyzed in terms of the hybridization of each atom, natural charges (Core, Valence and Rydberg), bonding and antibonding orbital’s second order perturbation energy (E(2)). The calculated E_HOMO and E_LUMO energies of the title molecule can be used to explain the charge transfer in the molecule and to calculate the global properties; the chemical hardness (η), softness (S) and electronegativity (χ). The NLO parameters: static dipole moment (µ), polarizability (α), anisotropy polarizability (Δα) and first order hyperpolarizability (β_{tot}) of the studied molecule have been calculated at the same level of theory. The Molecular Electrostatic Potential (MEP) and Electro Static Potential (ESP) for 1,4-dioxane were investigated and analyzed. Also, the electronic absorption spectra were discussed by Time-Dependent Density Functional Theory (TD-DFT) calculations for 1,4-dioxane in 10% ethanol/water. From the experimental conductance measurements, the association thermodynamic parameters (K_A, ΔG_A, ΔH_A and ΔS_A) and complex formation thermodynamic parameters (K_f, ΔG_f, ΔH_f and ΔS_f) of nano-CuSO₄ in the presence of 1,4-dioxane as a ligand in 10% ethanol-water at different temperatures (298.15, 303.15, 308.15 and 313.15*K) were applied and calculated.

KEYWORDS: DFT/TD-DFT; NLO and NBO analysis; Association parameters; Formation parameters; nano-CuSO₄; 1,4-dioxane.

INTRODUCTION

Juariisti and coworkers, [1] studied the anomeric effect in several 1,3 dioxane derivatives and concluded that in compounds with a good substitute for hydrogen bonding, an axial conformer is preferred. In mono-substituted

*To whom correspondence should be addressed.
+E-mail: shimaquantum@ymail.com ; eahgomaa65@yahoo.com
1021-9986/2019/3/43-60 18/$6.08
cyclohexanes with OH and OM, the equatorial conformer is preferred as an explanation reproduced by ab initio calculations. The preference for the equatorial conformer is even greater for the Me substituent and all these behaviors fit well with the results of calculations [2]. The marked preference of the equatorial orientation of the Methyl substitute has been attributed fundamentally to hyperconjugative interactions and not to steric effects and the same conclusion has been reached for cyclohexanol [3,4]. Recently, Dabbagh and Coworkers, [5] studied the structure, conformation of 1,4-dioxane, configuration of the imine group of the imidoyl moiety and the anomeric effect of cyclohexanes using X-ray crystallographic analysis. 1,4-Dioxanes have been studied extensively [6], and it was determined that their structures were comparable to certain antibiotics such as valinomycin [7], enniatin B, and nonactin, [8]. These structural similarities led to the use of 1,4-dioxanes as reference models to study the binding and delivery mechanisms of these antibiotics to their targeted biological sites [9]. This implicit solvation model approach is popular because it allows the calculation of the properties of a molecule in solution without prohibitively expensive computational cost. The NLO properties depend on the extent of Charge Transfer (CT) interaction across the conjugative paths and the electron transfer ability of an aromatic ring and on its ionization potential (IP) and electron affinity (EA) [10, 11]. Linear polarizability (\(\beta\)) and first order hyperpolarizability (\(\langle\beta\rangle\)) are required for the rational design of optimized materials for photonic devices such as electro-optic modulators and all-optical switches [12, 13]. Natural Bond Orbital (NBO) analysis was originated as a technique for studying hybridization and covalence effects in polyatomic wave functions. The work of Foster and Winhold [14] was extended by Reed et al., [15] who employed NBO analysis to molecules that exhibited particularly H-bonded and other strongly bound van der Waals complexes. The filled NBOs \(\sigma\) of the “natural Lewis structure” is well adapted to describing covalence effects in molecules [15]. However, the general transformation to NBOs also leads to orbitals that are unoccupied in the formal Lewis structure and that may be used to describe noncovalent effects. The symbols \(\sigma\) and \(\sigma^*\) are used in a generic sense to refer to filled and unfilled orbitals of the formal Lewis structure, though the former orbitals may actually be core orbitals (CR), lone pairs (LP), \(\sigma\) or \(\pi\) bonds (\(\sigma, \pi\)), and so forth, and the latter may be \(\sigma\) or \(\pi\) antibonds (\(\sigma^*, \pi^*\)), extravalence shell Rydberg (\(RY^*\)) orbital's. The object of our studies is to shed more light on the geometric structures (bond lengths, bond angles, and dihedral angles) and ground state properties of 1,4-Dioxanes. To achieve this goal, we have used Density Functional Theory (DFT-B3LYP) and basis set 6-311G (d,p), Natural Bonding Orbital's (NBO) and Non Linear Optical (NLO) analysis to identify and characterize the forces that govern the structure of the title molecule. The results from natural bonding orbital analysis have been evaluated in terms of the hybridization of each atom, natural charges (Core, Valence, and Rydberg), bonding and antibonding orbital's second order perturbation energy (\(E^{\text{2\text{nd}}}\)), exact configurations and Lewis and non-Lewis electrons. In addition to investigating the effect of solvent polarity on the observed spectra and hence, predicting the relative stabilities, extent of charge transfer character and assignment of the observed electronic transitions bands as localized, delocalized and/or of Charge Transfer (CT) have been facilitated by Density Functional Theory (DFT) and Time-Dependent Density Functional Theory (TD-DFT) calculations. The electronic structure of molecules usually manifests itself in the electronic absorption and emission spectra. This manifestation enables the detailed understanding of the forces that govern the electronic structure of the studied compound 1,4-Dioxane.

Copper sulfate is a fungicide material. Some fungi are able to elevate levels of copper ions. Algae can be controlled with small concentrations of copper sulfate. Copper sulfate inhibits the growth of bacteria. It can also cause cell death through apoptosis and necrosis [16, 17].

EXPERIMENTAL SECTION

Preparation of materials

The nano-CuSO₄ solution in water (1.0 x 10⁻³ M, 5 mL) and the solution of 1,4-Dioxane in 10% ethanol/water (1.0 x 10⁻⁴ M, 100 ml) were placed in the titration cell, thermostated at the preset temperature and the conductance of the solution was measured after the solution reached thermal equilibrium. Then, a known amount of mixed solvents (what solvent? Please be specific) was added in a stepwise manner using a calibrated micropipette. The conductance of the solution was measured after each addition until the desired
constant reading was achieved. The specific conductance values were recorded using a conductivity bridge JENCO – 3173 COND. with a cell constant equal to 1. The temperature was adjusted at 298.15, 303.15, 308.15 and 313.15K [18, 19].

Computational method

Calculations have been performed using Khon-Sham’s Density Functional Theory (DFT) method subjected to the gradient-corrected hybrid density functional B3LYP method [20]. This function is a combination of the Becke’s three parameters non-local exchange potential with the non-local correlation functional of Lee et al. [21]. For each structure, a full geometry optimization was performed using this function [21] and the 6-311G (p,d) basis set [22] as implemented by Gaussian 09 package [23]. All geometries were visualized either using GaussianView 5.0.9 [24] or chemcraft 1.6 software packages. No symmetry constraints were applied during geometry optimization. Also, the total static dipole moment (μ), ⟨Δn⟩, (β) values were calculated by using the following equations [25-27]:

\[
\mu = \left(\mu_x^2 + \mu_y^2 + \mu_z^2\right)^{1/2}
\]

\[
<\alpha> = \frac{1}{3} \left(a_{xx} + a_{yy} + a_{zz}\right)
\]

\[
\Delta \alpha = \left(\left(a_{xx} - a_{yy}\right)^2 + \left(a_{yy} - a_{zz}\right)^2 + \left(a_{zz} - a_{xx}\right)^2 / 2\right)^{1/2}
\]

\[
<\beta> = \left(\beta_x^2 + \beta_y^2 + \beta_z^2\right)^{1/2}
\]

Where

\[
\beta_x = \beta_{xxx} + \beta_{xyy} + \beta_{xz}\]

\[
\beta_y = \beta_{yyy} + \beta_{yyz} + \beta_{zxx}\]

\[
\beta_z = \beta_{zzz} + \beta_{xzz} + \beta_{yyz}
\]

By using HOMO and LUMO energy values for a molecule, electronegativity, and chemical hardness can be calculated as follows: \(\chi = (I + A)/2 \) (electronegativity), \(\eta = (I - A)/2 \) (chemical hardness), \(S = 1/2\eta \) (chemical softness) where \(I \) and \(A \) are ionization potential and electron affinity, and \(I = -E_{HOMO} \) and \(A = -E_{LUMO} \), respectively [28, 29]. The population analysis has also been performed by the natural bond orbital method [30] at B3LYP/6-311G (d,p) level of theory using natural bond orbital (NBO) under Gaussian 09 program package. The second-order Fock matrix was used to evaluate the donor-acceptor interactions in the NBO basis [31]:

The interactions result in a loss of occupancy from the localized NBO of the idealized Lewis structure into an empty non-Lewis orbital. For each donor (i) and acceptor (j), the stabilization energy \(E^{(2)} \) associated with the delocalization \(i \rightarrow j \) is estimated as

\[
E^{(2)} = \Delta E_{ij} = q_i \left(F(ij)^2 / \epsilon_j - \epsilon_i \right)
\]

Where \(q_i \) is the donor orbital occupancy, \(\epsilon_i \), and \(\epsilon_j \) are diagonal elements and \(F(ij) \) is the off-diagonal NBO Fock matrix element. The conversion factors for \(a, \beta, \gamma \), and HOMO and LUMO energies in atomic and cgs units: 1 atomic unit (a.u.) = 0.1482 × 10\(^{-24}\) electrostatic unit (esu) for polarizability; 1 a.u. = 8.6393 × 10\(^{-33}\) esu for first hyperpolarizability; 1 a.u. = 27.2116 eV (electron volt) for HOMO and LUMO energies.

RESULTS AND DISCUSSION

Association thermodynamic parameters.

The association constants for nano-CuSO\(_4\) in the presence of the ligand 1,4-Dioxane in ethanol and water at different temperatures (298.15, 303.15, 308.15 and 313.15 K) were calculated by using equation (4) [32-37].

\[
K_m = \Lambda_0 \left(\Lambda_0 - S(Z) \Lambda_m \right)
\]

\[
C_m \Lambda_m^2 S(Z)^{2\gamma+2}
\]

Where \(\Lambda_m \), \(\Lambda_0 \) are the molar and limiting molar conductance of nano-CuSO\(_4\) in the presence of the ligand respectively. \(C_m \) is the molar concentration of nano-CuSO\(_4\), \(S(Z) \) is Fouss – Shedlovsky factor, equal with unity for strong electrolytes, \(\gamma_s \) is the mean activity coefficient.

The association constants at different temperatures (298.15, 303.15, 308.15 and 313.15 °K) for nano-CuSO\(_4\) in the presence of 1,4-dioxane are estimated and listed in Table 1. The estimated values indicate that the association constants increase as the temperature increases.

The relationship between the molar conductance (\(\Lambda_m \)) of CuSO\(_4\) in the presence of the ligand and the square root of concentration (\(C^{1/2} \)) for nano-CuSO\(_4\) in the presence of 1,4-dioxane at different temperatures
Table 1: Association constants of 1,4-dioxane (in 10% ethanol-90% water) at different temperatures.

<table>
<thead>
<tr>
<th>T (°K)</th>
<th>C</th>
<th>C^{1/2}</th>
<th>Λ_m</th>
<th>Λ_a</th>
<th>Log γ_a</th>
<th>γ_a</th>
<th>K_a</th>
</tr>
</thead>
<tbody>
<tr>
<td>298.15</td>
<td>9.091 x 10^{-5}</td>
<td>0.0095</td>
<td>399.296</td>
<td>1800</td>
<td>-0.0048</td>
<td>0.977</td>
<td>182233.5</td>
</tr>
<tr>
<td>303.15</td>
<td>9.091 x 10^{-5}</td>
<td>0.0095</td>
<td>458.6</td>
<td>1800</td>
<td>-0.0048</td>
<td>0.977</td>
<td>132300.6</td>
</tr>
<tr>
<td>308.15</td>
<td>9.091 x 10^{-5}</td>
<td>0.0095</td>
<td>721.5</td>
<td>1390</td>
<td>-0.0048</td>
<td>0.977</td>
<td>20570.4</td>
</tr>
<tr>
<td>313.15</td>
<td>9.091 x 10^{-5}</td>
<td>0.0095</td>
<td>546.695</td>
<td>1200</td>
<td>-0.0048</td>
<td>0.977</td>
<td>30227.78</td>
</tr>
</tbody>
</table>

Table 2: Association constants, free energies, enthalpies and entropies of Association of 1,4-dioxane (in 10% ethanol-90% water).

<table>
<thead>
<tr>
<th>T (K)</th>
<th>ΔG_a</th>
<th>ΔH_a</th>
<th>TΔS</th>
<th>ΔS_a</th>
</tr>
</thead>
<tbody>
<tr>
<td>298.15</td>
<td>-30.0325</td>
<td>-309.54</td>
<td>-279.508</td>
<td>-0.9374</td>
</tr>
<tr>
<td>303.15</td>
<td>-29.7289</td>
<td>-309.54</td>
<td>-279.811</td>
<td>-0.0092</td>
</tr>
<tr>
<td>308.15</td>
<td>-25.4498</td>
<td>-309.54</td>
<td>-284.09</td>
<td>-0.9219</td>
</tr>
<tr>
<td>313.15</td>
<td>-26.865</td>
<td>-309.54</td>
<td>-282.675</td>
<td>-0.9027</td>
</tr>
</tbody>
</table>

Fig. 1: The relationship between Λ_m and C^{1/2} for nano-CuSO_4 in the presence of 1,4-dioxane (in 10% ethanol-90% water).

is illustrated in Fig. 1. The data show an inverse relationship between the molar conductance and (C^{1/2}). Also, the molar conductance increases with increasing the temperature.

The calculated free energies, enthalpies and entropies of association for nano-CuSO_4 in the presence of 1,4-dioxane at (298.15, 303.15, 308.15 and 313.15 K) are listed in Table 2. The data show that free energies of association decrease in negativity with increasing the temperature. Negative free energies at all temperatures indicate the spontaneous character of the reaction.

The calculated values for the formation constants, free energies, enthalpies and entropies of formation for nano-CuSO_4 in the presence of 1,4-dioxane at (298.15, 303.15, 308.15 and 313.15 K) are listed in Table 3. The data in Table 3 show that the formation of constants and free energies in case of (1:1) metal to ligand are more favorable than (1:2) metal to ligand. This may be explained because the free energies in case of (1:1) metal to ligand are more negative than (1:2) metal to ligand. The calculated free energies of formation values in Table 3 have decreased as the temperature increases, meaning that a lower temperature favors the complex formation.

The relationship between log K_A and 1/T in the presence of 1,4-dioxane for nano-CuSO_4 is shown in Fig. 2.

Formation thermodynamic parameters

The relationship between the molar conductance (Λ_m) and the molar ratio of Metal to Ligand (M/L) indicate the formation of 1:2 and 1:1 stoichiometric complexes. The formation constants (K_f) for the 1:2 and 1:1 (M:L) complexes were calculated by using equation (5) [38-41].

\[
K_f = \frac{A_{m} - A_{obs}}{(A_{obs} - A_{ML})[L]}
\] (5)

Where Λ_m is the limiting molar conductance of the salt alone, A_{obs} is the molar conductance of solution during titration, [L] is the concentration of ligand and Λ_{ML} is the molar conductance of the complex. By drawing the relationship between the molar conductance (Λ_m) and the molar ratio of metal to ligand concentrations (C_m/C_L), the resulting figures confirm the formation of 1:2 and 1:1 stoichiometric complexes. The relationship between Λ_m and C_m/C_L at (298.15, 303.15, 308.15 and
Table 3: Formation constants, free energies, enthalpies and entropies of formation of dioxane (in 10% ethanol-90% water).

<table>
<thead>
<tr>
<th>TEMP</th>
<th>M:L</th>
<th>K_f</th>
<th>ΔG_f</th>
<th>ΔH_f</th>
<th>ΔS_f</th>
</tr>
</thead>
<tbody>
<tr>
<td>298.15</td>
<td>1:2</td>
<td>9860.189</td>
<td>-22.8007</td>
<td>-79.6218</td>
<td>-0.1906</td>
</tr>
<tr>
<td></td>
<td>1:1</td>
<td>128025.9</td>
<td>-29.1571</td>
<td>-123.5868</td>
<td>-0.3167</td>
</tr>
<tr>
<td>303.15</td>
<td>1:2</td>
<td>7101.32</td>
<td>-22.3557</td>
<td>-79.6218</td>
<td>-0.1889</td>
</tr>
<tr>
<td></td>
<td>1:1</td>
<td>87745.81</td>
<td>-28.6937</td>
<td>-123.5868</td>
<td>-0.3130</td>
</tr>
<tr>
<td>308.15</td>
<td>1:2</td>
<td>4399.646</td>
<td>-21.4976</td>
<td>-79.6218</td>
<td>-0.1886</td>
</tr>
<tr>
<td></td>
<td>1:1</td>
<td>41734.68</td>
<td>-27.8503</td>
<td>-123.5868</td>
<td>-0.3107</td>
</tr>
<tr>
<td>313.15</td>
<td>1:2</td>
<td>4716.742</td>
<td>-22.0276</td>
<td>-79.6218</td>
<td>-0.1839</td>
</tr>
<tr>
<td></td>
<td>1:1</td>
<td>45180.88</td>
<td>-27.9117</td>
<td>-123.5868</td>
<td>-0.3055</td>
</tr>
</tbody>
</table>

Fig. 2: The relationship between log K_A and 1/T for nano-CuSO$_4$ in the presence of 1,4-dioxane (in 10% ethanol-90% water).

Fig. 3: The relationship between Λ_m and C_M/C_L at 298.15 K for nano-CuSO$_4$ in the presence of 1,4-dioxane (in 10% ethanol-90% water).

Fig. 4: The relation between Λ_m and C_M/C_L at 303.15 K for nano-CuSO$_4$ in the presence of 1,4-dioxane (in 10% ethanol-90% water).

Fig. 5: The relationship between Λ_m and C_M/C_L at 308.15 K for nano-CuSO$_4$ in the presence of 1,4-dioxane (in 10% ethanol-90% water).

313.15 °K) for nano-CuSO$_4$ in the presence of 1,4-dioxane in ethanol/water mixed solvents are shown in Figs. 3, 4, 5 and 6. Figs. 7 and 8 illustrate the relationship between log K_f and 1/T when metal to ligand ratio is 1:2 and 1:1 respectively for nano-CuSO$_4$ in presence of 1,4-dioxane.
Ali L.L. et al.
Vol. 38, No. 3, 2019

Research Article

Fig. 6: The relationship between Λ_m and C_m/C_L at 313.15 K for nano-CuSO$_4$ in the presence of 1,4-dioxane (in 10% ethanol-90% water).

Fig. 7: The relationship between $\log K_f$ and $1/T$ when M:L is 1:2 for nano-CuSO$_4$ in the presence of 1,4-dioxane (in 10% ethanol-90% water).

Fig. 8: The relationship between $\log K_f$ and $1/T$ when M:L is 1:1 for nano-CuSO$_4$ in the presence of 1,4-dioxane (in 10% ethanol-90% water).

Fig. 9 TEM for nano-CuSO$_4$ (a-d). All images in Fig. 9 (a-d) were measured by using JEOL HRTEM - JEM 2100 (JAPAN). The figures show that the TEM of CuSO$_4$ obtained in ethanol are irregular spheres in the form of cylinders. The diameter is in the range of 10-77.86 nm. The small sizes in the range between 10, 12.05 to 20.76 nm are collected to give bigger sizes to 77.86 nm (a-c). These different sizes were proved also by x-ray diffraction which gave crystal sizes in the same order (d). The non-homogeneity in the sizes of nano-CuSO$_4$ particles need be controlled during the primary preparation of the samples.

Ground state properties

The total energy (E_T), the energy of the highest occupied molecular orbital (E_{HOMO}), energy of the lowest unoccupied molecular orbital (E_{LUMO}), energy gap (E_g) and dipole moment (μ) of 1,4-dioxane are presented in Table 4. The optimized structure of the title molecule is obtained using the B3LYP/6-311G (d,p) level of theory, numbering system, net charge, vector of dipole moment and the charge density maps of HOMO and LUMO are presented in Fig. 10. From Table 4 and Fig. 10 one can reveal the following:

- The ionization energy (IE) of 1,4-dioxane which measures its donating property (oxidation power) is 5.22 eV (c.f. Table 4).
- The electron affinity (E.A) which measures the accepting property (reducing power) is 0.28 eV.
- The calculated energy gaps, (E_g), which measure the chemical activity of free 1,4-dioxane is 4.95 eV (≈ 114.1 kcal).
- The theoretically computed dipole moment (μ), which measures the polarity or charge separation over the title molecule is 0.00 D.

Geometric Structure

The optimized geometric parameters (bond lengths, bond angles, and dihedral angles) of 1,4-dioxane using B3LYP/6-311G (d,p) level of theory are listed in Table 5 and are compared with the available x-ray experimental data [42]. The observed bond lengths of C$_1$-C$_2$, C$_1$-O$_{10}$, and C$_2$-H$_8$ in 1,4-dioxane are 1.479 Å, 1.380 Å, and 1.030 Å respectively, while the obtained theoretical values are 1.327 Å, 1.388 Å, and 1.079 Å respectively [42]. The computed bond angles of $<\text{C}_1\text{O}_{10}\text{C}_2$, $<\text{O}_{10}\text{C}_2\text{H}_8$, $<\text{C}_2\text{H}_8\text{O}_{10}$,
Table 4: Total energy, the energy of HOMO and LUMO, energy gap and dipole moment of 1,4-Dioxane computed at the B3LYP/6-311G (d,p) level of theory.

<table>
<thead>
<tr>
<th>Compounds</th>
<th>E_T (au)</th>
<th>E_{HOMO} (eV)</th>
<th>E_{LUMO} (eV)</th>
<th>E_{gap} (eV)</th>
<th>μ (Debye)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,4-Dioxane</td>
<td>-305.27849</td>
<td>-5.22485</td>
<td>-0.27826</td>
<td>4.946592</td>
<td>0</td>
</tr>
</tbody>
</table>

Fig. 9: TEM for nano-CuSO$_4$ (a-d). The four images (a-d) were measured using JEOL HRTEM – JEM 2100 (JAPAN). The images show that TEM of CuSO$_4$ obtained in ethanol are irregular spheres in the form of cylinders. The diameters are in the range of 10-77.86 nm. The small sizes in the range between 10, 12.05 to 20.76 nm are collected to give bigger sizes till 77.86 nm (a-c). These irregular sizes were proved also by x-ray diffraction measurement, which shows crystal sizes in the same order (d). The non homogeneity in sizes for nano copper sulfate particles need to be controlled during the primary preparation of the samples.

The bond lengths and angles calculated by B3LYP methods are in good agreement with the experimental values. The Mullikan net charge observed on active centers O1 and O2 are -0.301 and -0.301 respectively. The most stable geometry of the studied compound is a planar structure as indicated from the dihedral angles (c.f. Table 5).

Natural Bonding Orbital (NBO) Analysis

The NBO analysis provides an efficient method for studying intra- and intermolecular bonding and interaction among bonds, and also enables a convenient basis for investigating charge transfer or conjugative interaction in molecular systems [43]. The larger the interacting stabilization energy $E^{(2)}$ value, the more intensive is the interaction between electron donors and the greater the extent of conjugation of the whole system. Delocalization of electron density between occupied Lewis type (bond or lone pair) NBO orbital's and formally unoccupied (antibonding or Rydberg) non Lewis NBO orbitals correspond to a stabiling donor-acceptor interaction [44, 45]. NBO analysis was performed on the title molecule at the DFT/B3LYP/6-311G (d,p) level in order to elucidate the intramolecular rehybridization
Table 5: Selected experimental and theoretical bond lengths, bond angles, dihedral angles and net charges for 1,4-Dioxane at the B3LYP/6-311G (d,p) level of theory.

<table>
<thead>
<tr>
<th>Bond lengths (Å)</th>
<th>1,4-Dioxane</th>
<th>X-ray [42]</th>
<th>Bond angle (°)</th>
<th>1,4-Dioxane</th>
<th>X-ray [42]</th>
<th>Dihedral angles (°)</th>
<th>1,4-Dioxane</th>
<th>X-ray [42]</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1 – C2</td>
<td>1.327</td>
<td>1.479</td>
<td><C2C1O10</td>
<td>123.946</td>
<td>118.987</td>
<td>C1C2H2H6</td>
<td>0.0000</td>
<td>0.390</td>
</tr>
<tr>
<td>C1 – H5</td>
<td>1.079</td>
<td>1.030</td>
<td><C2C1H1</td>
<td>123.264</td>
<td>116.868</td>
<td>H2C1O10C4</td>
<td>180.000</td>
<td>176.999</td>
</tr>
<tr>
<td>C1 – O10</td>
<td>1.388</td>
<td>1.380</td>
<td><C2O10H4</td>
<td>112.790</td>
<td>111.925</td>
<td>C2C3O10C4</td>
<td>0.0000</td>
<td>0.390</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><C2C3O4</td>
<td>112.108</td>
<td>110.635</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Net charges</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>O1</td>
<td>-0.301</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>O2</td>
<td>-0.301</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 10: Optimized geometry, numbering system, net charge, HOMO and LUMO for 1,4-Dioxane using B3LYP/6-311G (d,p).

and delocalization of electron density within the molecule. The molecular interaction is formed by the orbital overlap between σ (C-C) and σ*(C-C) bond orbitals, which indicate that intramolecular charge (ICT) causes stabilization of the system. These interactions are observed as an increase in Electron Density (ED) in C-C antibonding orbital that weakens the respective bonds. The electron density of conjugated double as well as the single bonds of the conjugated ring (≈ 1.9e) clearly demonstrate strong delocalization inside the molecule [46].

Donor-acceptor bonding in title molecules

The perturbation energies of donor-acceptor interactions and the type of each bonding and antibonding orbitals,
Theoretical Study of 1,4-Dioxane in Aqueous Solution...

Table 6: Second Order Perturbation Theory Analysis of Fock Matrix in NBO Basis for 1,4-Dioxane by B3LYP/6-311G (d,p).

<table>
<thead>
<tr>
<th>Donor 1,4-Dioxane</th>
<th>Type</th>
<th>ED((\epsilon)) (e)</th>
<th>Acceptor</th>
<th>Type</th>
<th>ED((\epsilon)) (e)</th>
<th>(E^{(2)}) (kcal/mol)</th>
<th>(E\big((\epsilon)-\epsilon\big)(\text{a.u.}))</th>
<th>(F(ij)) (a.u.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BD C1-H5</td>
<td>(\sigma)</td>
<td>1.97559</td>
<td>BD*C2-O9</td>
<td>(\sigma^*)</td>
<td>0.02103</td>
<td>6.57</td>
<td>0.88</td>
<td>0.068</td>
</tr>
<tr>
<td>BD C4-H8</td>
<td>(\sigma)</td>
<td>1.97559</td>
<td>BD*C1-O10</td>
<td>(\sigma^*)</td>
<td>0.02103</td>
<td>3.67</td>
<td>0.88</td>
<td>0.051</td>
</tr>
<tr>
<td>LP(1) O10</td>
<td></td>
<td>1.96299</td>
<td>BD*C3-C4</td>
<td>(\sigma^*)</td>
<td>0.01955</td>
<td>4.81</td>
<td>1.21</td>
<td>0.069</td>
</tr>
<tr>
<td>LP(2) O9</td>
<td></td>
<td>1.84559</td>
<td>BD*C1-C2</td>
<td>(\pi^*)</td>
<td>0.14743</td>
<td>26.59</td>
<td>0.35</td>
<td>0.086</td>
</tr>
</tbody>
</table>

\(E^{(2)}\) means energy of hyperconjugative interactions (stabilization energy). \(E\big((\epsilon)-\epsilon\big)(\text{a.u.})\) is the Fock matrix element between donor and acceptor i and j NBO orbitals.

Table 7: Occupancy of natural orbitals (NBOs) and hybrids of 1,4-Dioxane by B3LYP/6-311G (d,p).

<table>
<thead>
<tr>
<th>Donor Lewis-type (NBOs) 1,4-Dioxane</th>
<th>Occupancy</th>
<th>Hybrid</th>
<th>AO [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sigma) BD C1-H5</td>
<td>1.97559</td>
<td>sp (^{2.11})</td>
<td>s(32.12%)(p)(67.83%)(d)(0.05%)</td>
</tr>
<tr>
<td>(\sigma) BD C4-H8</td>
<td>1.97559</td>
<td>sp (^{2.11})</td>
<td>s(32.12%)(p)(67.83%)(d)(0.05%)</td>
</tr>
<tr>
<td>LP(1) O10</td>
<td>1.96299</td>
<td>sp (^{3.39})</td>
<td>s(41.85%)(p)(58.12%)(d)(0.03%)</td>
</tr>
<tr>
<td>LP(2) O9</td>
<td>1.84559</td>
<td>p (^{1.00})</td>
<td>s(0.00%)(p)(99.95%)(d)(0.05%)</td>
</tr>
</tbody>
</table>

Fock-matrix element between donor and acceptor orbitals, occupancy of donor Lewis-type NBO's, hybridization and % AO of the studied molecule using B3LYP/6-311G (d,p) are presented in Tables 6 and 7. From Table 6 in our title molecule \(\sigma\) (C-H3) \(\rightarrow\) \(\sigma\) (C-O3) has 6.57 kJ/mol and LP (2) O9 \(\rightarrow\) \(\pi^*\) (C1-C2) has 26.59 kJ/mol. Hence, they give stronger stabilization to the structure. From Table 7 it is noted that the maximum occupancies 1.97559, 1.96299 are obtained for \(\sigma\) (C-H3), and LP (1) O10, respectively. Therefore, these bonds are essentially controlled by the sp-character of the hybrid orbitals (c.f. Table 7).

Natural Bonding Orbital (NBO) occupancy and hybrid orbitals

The calculated natural hybrids on each atom and occupancies are given in Table 7. As seen from Table (7), the \(\sigma\) (C-H3) bond is formed from \(sp^{2.11}\) hybrids on carbon (which is a mixture of 32.12\% \(s\), 67.83\% \(p\), and 0.05\% \(d\) atomic orbitals). On the other hand, LP (1) O10 bond is formed from \(sp^{1.39}\) hybrids on carbon (which is a mixture of 41.85\% \(s\), 58.12\% \(p\), and 0.03\% \(d\) atomic orbital's). The LP (2) O9 is formed from \(p^{1.00}\) hybrid on carbon (which is a mixture of 0.00\% \(s\), 99.95\% \(p\), and 0.05\% \(d\) atomic). The natural population analysis showed that 44 electrons in the free 1,4-dioxane are distributed on the sub shells as total Lewis (core and valence Lewis) and total non-Lewis (valence non-Lewis and Rydberg non-Lewis). The computed values and percentage of each are found below:

- Core: 11.99512 (99.959\% of 12)
- Valence Lewis: 31.45733 (98.304\% of 32)
- Total Lewis: 43.45245 (98.756\% of 44)
- Valence non-Lewis: 0.47922 (1.089\% of 44)
- Rydberg non-Lewis: 0.06833 (0.155\% of 44)
- Total non-Lewis: 0.54755 (1.244\% of 44)

Natural charge and exact configuration

The natural population analysis performed on the electronic structures of 1,4-dioxane clearly describes the distribution of electrons in various sub-shells of their atomic orbits. The accumulation of charges on the individual atom and the accumulation of electrons in the core, valence and Rydberg sub-shells and natural electronic configuration are also presented in Table 8. In our title molecule, the most electronegative center charge of -0.5249 and -0.5249 are accumulated on O8, and O10 atoms. According to an electrostatic point of view of the molecule, these electronegative atoms have tendencies to donate electrons. Also, it is found that the most electropositive center charges of 0.1937, 0.1937, 0.1937 and 0.1937 are accumulated on H8, H1, H5, and H7-atoms. According to an electrostatic point of view of the molecule, these electronegative atoms have tendencies to accept electrons. The natural electronic configuration of each electronegative and electropositive atom is listed in Table 8.
Table 8: Natural Charge, Natural Population and Natural electronic Configuration of 1,4-Dioxane using B3LYP/6-311G(d,p).

<table>
<thead>
<tr>
<th>Compound</th>
<th>Atom No.</th>
<th>Natural Charge</th>
<th>Natural Population</th>
<th>Natural electronic Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,4-Dioxane</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1</td>
<td>0.0687</td>
<td>1.999</td>
<td>3.9083</td>
<td>[core]2S(0.92)2p(2.99)3p(0.01)3d(0.01)</td>
</tr>
<tr>
<td>C2</td>
<td>0.0687</td>
<td>1.999</td>
<td>3.9083</td>
<td>[core]2S(0.92)2p(2.99)3p(0.01)3d(0.01)</td>
</tr>
<tr>
<td>C3</td>
<td>0.0687</td>
<td>1.999</td>
<td>3.9083</td>
<td>[core]2S(0.92)2p(2.99)3p(0.01)3d(0.01)</td>
</tr>
<tr>
<td>C4</td>
<td>0.0687</td>
<td>1.999</td>
<td>3.9083</td>
<td>[core]2S(0.92)2p(2.99)3p(0.01)3d(0.01)</td>
</tr>
<tr>
<td>H1</td>
<td>0.1937</td>
<td>0</td>
<td>0.8044</td>
<td>0.00183 0.81 1S(0.80)</td>
</tr>
<tr>
<td>H2</td>
<td>0.1937</td>
<td>0</td>
<td>0.8044</td>
<td>0.00183 0.81 1S(0.80)</td>
</tr>
<tr>
<td>H3</td>
<td>0.1937</td>
<td>0</td>
<td>0.8044</td>
<td>0.00183 0.81 1S(0.80)</td>
</tr>
<tr>
<td>O1</td>
<td>-0.5249</td>
<td>1.999</td>
<td>6.5139</td>
<td>0.01121 8.52 [core]2S(1.61)2p(4.90)3p(0.01)</td>
</tr>
<tr>
<td>O2</td>
<td>-0.5249</td>
<td>1.999</td>
<td>6.5139</td>
<td>0.01121 8.52 [core]2S(1.61)2p(4.90)3p(0.01)</td>
</tr>
</tbody>
</table>

Core 11.99512 (99.959% of 12)
Valence Lewis 31.45733 (98.304% of 32)

Total Lewis 43.45245 (98.756% of 44)

Valence non-Lewis 0.47922 (1.089% of 44)

Rydberg non-Lewis 0.06833 (0.155% of 44)

Total non-Lewis 0.54755 (1.244% of 44)

Global reactivity descriptors

The Frontier Molecular Orbital (FMO) energies of 1,4-dioxane were calculated using B3LYP/6-311G (d,p). The HOMO energy characterizes the electron giving ability, while the LUMO energy characterizes the electron withdrawing ability. The energy gap between HOMO and LUMO characterizes the molecular chemical stability and it is a critical parameter in determining molecular electrical transport properties because it is a measure of electron conductivity. From Fig. 11 and Table 9, HOMO energy is calculated as -5.225 eV and LUMO energy is calculated as -0.278 eV by using B3LYP/6-311G (d,p) level. The small energy gap between HOMO and LUMO indicates that charge transfer occurs within the molecule and the molecule can be easily polarized. Using HOMO and LUMO energies, ionization potential and electron affinity can be explicated as $IP \approx -E_{HOMO}$, $EA \approx -E_{LUMO}$. The variation of electronegativity (χ) values is supported by the electrostatic potential. For any two molecules, electrons will be partially transferred from one of low χ to that of high χ (electron flow from high chemical potential to low chemical potential).

The chemical hardness (η) = $(IP - EA)/2$, electronegativity (χ) = $(IP + EA)/2$, chemical potential (μ) = -$(IP + EA)/2$, and chemical softness (S) = $1/2\eta$, values were calculated as 2.473, 2.751, -2.751 and 0.202 respectively. Obtained small η value means that the charge transfer occurs in the molecule. Considering the η values, a large HOMO - LUMO gap means a hard molecule and a small HOMO -LUMO gap means a soft molecule. Additionally, it can be said that the smaller HOMO – LUMO energy gap represents more reactive molecule.

Other molecular properties

The 3D plots of Highest Occupied Molecular Orbital (HOMO) and the Lowest Unoccupied Molecular Orbital (LUMO), Electrostatic Potential (ESP), Electron Density (ED), and the Molecular Electrostatic Potential (MEP) map for the title molecule at the B3LYP method with 6-311G (d,p) level are shown in Fig. 11. The ED plot for the title, a molecule shows a uniform distribution. While the negative ESP is more localized over the oxygen atoms, the positive ESP is localized on the rest of the molecule.

52 Research Article
ESP

MEP

Total density

Fig. 11: Molecular surfaces and atomic charge distribution (au) of the 1,4-Dioxane using B3LYP/6-311G (d,p).

MEP has been used primarily for predicting sites and relative reactivity towards electrophilic and nucleophilic attack, and in the studies of biological recognition and hydrogen bonding interactions [47-49]. The 3D MEP of the title compound was calculated from optimized molecular structure by using B3LYP/6–311G (d,p) level and also shown in Fig. 11. The color scheme for the MEP surface is as follows: red for electron rich, partially negative charge; blue for electron deficient, partially positive charge; light blue for slightly electron deficient region; yellow for slightly electron rich region; green for neutral (zero potential); respectively. According to our results, the negative region (red) is located mainly over the O atomic sites, which are caused by the contribution of lone-pair electrons of the oxygen atom. The positive potential sites (blue) are located around the hydrogen and carbon atoms. A portion of the molecule that has a negative electrostatic potential will be susceptible to electrophilic attack; the more negative is the better. It is not as straightforward to use electrostatic potentials to predict nucleophilic attack [50]. Hence, the negative region (red) and positive region (blue) indicate electrophilic and nucleophilic attack symptoms. Also, a negative electrostatic potential region is observed around the O9 atom.

The corresponding Mulliken’s plot with B3LYP/6-311G (d,p) method is shown in Fig. 11. It is noted from Fig. 11 that strong negative and positive partial charges on the skeletal atoms (especially O9, O10, C1, C2, C1, C4, H5, H6, H7, H8) for the selected compounds increase with increasing Hammett constant of substituent groups [51, 52]. These distributions of partial charges on the skeletal atoms show that the electrostatic repulsion or attraction between atoms can contribute significantly to the intra- and intermolecular interaction.

NonLinear Optical (NLO) Analysis

P-nitroaniline (PNA) is one of the prototypical molecules that are used in the study of the NLO properties of molecular systems. It is used frequently as a threshold value for comparative purposes and continues to be a recognized prototype of organic NLO chromophores. Its hyperpolarizability was studied both experimentally and theoretically in various solvents and at different frequencies [53–56]. Thus, we selected PNA as a reference molecule in this study, because there were no experimental values for 1,4-dioxane in the literature.
Table 9: The ionization potential (I/eV), electron affinity (A/eV), chemical hardness (η/eV), softness (S/eV$^{-1}$), chemical potential (μ) and electronegativity (χ/eV), of 1,4-Dioxane using B3LYP/6-311G (d,p).

<table>
<thead>
<tr>
<th>Compounds</th>
<th>I (eV)</th>
<th>A (eV)</th>
<th>χ (eV)</th>
<th>η (eV)</th>
<th>μ (eV)</th>
<th>S (eV$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,4-Dioxane</td>
<td>5.225</td>
<td>0.278</td>
<td>2.751</td>
<td>-2.751</td>
<td>2.473</td>
<td>0.202</td>
</tr>
</tbody>
</table>

Table 10: Total static dipole moment (μ), the mean polarizability ($\langle\alpha\rangle$), the anisotropy of the polarizability ($\Delta\alpha$), and the mean first-order hyperpolarizability ($\langle\beta\rangle$) for 1,4-Dioxane using B3LYP/6-311G (d,p).

<table>
<thead>
<tr>
<th>Property</th>
<th>PNA</th>
<th>B3LYP/6-311G(d,P) 1,4-Dioxane</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ_x</td>
<td>0.0000 Debye</td>
<td>0.0000 Debye</td>
</tr>
<tr>
<td>μ_y</td>
<td>0.0000 Debye</td>
<td>0.0000 Debye</td>
</tr>
<tr>
<td>μ_z</td>
<td>0.0000 Debye</td>
<td>0.0000 Debye</td>
</tr>
<tr>
<td>μ</td>
<td>2.44 Debyea</td>
<td>0.0000 Debye</td>
</tr>
<tr>
<td>α_{xx}</td>
<td>-36.4485 a.u.</td>
<td></td>
</tr>
<tr>
<td>α_{xy}</td>
<td>-0.0001 a.u.</td>
<td></td>
</tr>
<tr>
<td>α_{yy}</td>
<td>-26.3994 a.u.</td>
<td></td>
</tr>
<tr>
<td>α_{yz}</td>
<td>-36.8630 a.u.</td>
<td></td>
</tr>
<tr>
<td>α_{zz}</td>
<td>0.0003 a.u.</td>
<td></td>
</tr>
<tr>
<td>α</td>
<td>0.0000 a.u.</td>
<td>0.0000 a.u.</td>
</tr>
<tr>
<td>$\langle\alpha\rangle$</td>
<td>22 \times 10$^{-24}$ cm3</td>
<td>3.62 \times 10$^{-24}$ esu</td>
</tr>
<tr>
<td>$\Delta\alpha$</td>
<td>8.68 \times 10$^{-24}$ esu</td>
<td></td>
</tr>
<tr>
<td>β_{xx}</td>
<td>0.000 a.u.</td>
<td></td>
</tr>
<tr>
<td>β_{xy}</td>
<td>0.000 a.u.</td>
<td></td>
</tr>
<tr>
<td>β_{yy}</td>
<td>0.000 a.u.</td>
<td></td>
</tr>
<tr>
<td>β_{yz}</td>
<td>0.000 a.u.</td>
<td></td>
</tr>
<tr>
<td>β_{xz}</td>
<td>0.000 a.u.</td>
<td></td>
</tr>
<tr>
<td>β</td>
<td>0.000 a.u.</td>
<td></td>
</tr>
<tr>
<td>$\langle\beta\rangle$</td>
<td>15.5 \times 10$^{-30}$ esuc</td>
<td>0.000 esu</td>
</tr>
</tbody>
</table>

a, b, c) PNA results are taken from references [60-62].

Polarizabilities and hyperpolarizabilities characterize the response of a system in an applied electric field [57]. They determine not only the strength of molecular interactions as well as the cross-sections of different scattering and collision processes, but also the non-linear optical (NLO) properties of the system [58, 59]. In order to investigate the relationships among photocurrent generation, molecular structures and NLO, the polarizabilities and hyperpolarizabilities of title compound were calculated using B3LYP method, 6-311G (d,p) basis set, based on the finite-field approach. The mean first order hyperpolarizability ($\langle\beta\rangle$), total static dipole moment (μ), the mean polarizability ($\langle\alpha\rangle$), and the anisotropy of the polarizability ($\Delta\alpha$), of 1,4-dioxane are presented in Table 10. The calculated value of the dipole moment was found to be 0.00 D at B3LYP/6-311G (d,p).
Table 11: Theoretical UV spectra of 1,4-Dioxane, calculated at TD-B3LYP/6–311G (d, p).

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Coefficient</th>
<th>f</th>
<th>λ, nm</th>
<th>Configuration</th>
<th>Coefficient</th>
<th>f</th>
<th>λ, nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>I 21\rightarrow23 22\rightarrow28</td>
<td>0.55</td>
<td>0.42</td>
<td>148</td>
<td>151</td>
<td>0.61</td>
<td>0.55</td>
<td>151</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I 19\rightarrow23</td>
<td>0.70</td>
<td>0.14</td>
<td>131</td>
<td>131</td>
<td>0.18</td>
<td>0.70</td>
<td>131</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I 21\rightarrow25</td>
<td>0.70</td>
<td>0.02</td>
<td>140</td>
<td>136</td>
<td>0.02</td>
<td>0.70</td>
<td>136</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV 18\rightarrow23</td>
<td>0.70</td>
<td>0.01</td>
<td>129</td>
<td>131</td>
<td>0.01</td>
<td>0.70</td>
<td>130</td>
</tr>
</tbody>
</table>

The calculated mean polarizability ($<\alpha>$) is 3.62x10$^{-24}$ esu, i.e. two times smaller than PNA molecule. In addition, the calculated mean first order hyperpolarizability (β), of the title molecule is 0.00 esu i.e. smaller than PNA molecule [60-62]. These results indicate the linearity of the title molecule and show that it cannot be used as NLO materials.

Electronic absorption spectra of dioxane

The theoretical electronic spectra of 1,4-dioxane in 10% ethanol/90% water solvent mixture and the assignment of the spectra are given in Fig. 12 and Table 11. The charge density maps of the occupied and vacant MOs considered in the transitions are presented in Figs. (13 and 14). The spectrum in ethanol/water is composed of four bands centered at 151 nm, 131 nm, 136 nm, and 130 nm. All bands are assigned to (π-*π*) transitions as reflected in their intensities (0-500). The excited configurations considered in 1,4-dioxane are those which result from an electron excitation of five highest occupied molecular orbitals ϕ_1-ϕ_5 and the lowest five vacant molecular orbitals ϕ_{23}-ϕ_{27}.

The first (π-*π*) state is centered at 151 nm in ethanol and water and in the gas phase at 148 nm this band...
is composed of a mixture of two configurations, (c.f. Table 11) and assigned as CT, and delocalized configurations may be expected. The second (\(\pi-\pi^*\)) state is centered at 131 nm in ethanol and water and in the gas phase at 131 nm. This state is composed of one configuration, namely, \(\phi_{19}\phi_{23}\), that is, CT character may be expected (Figs. 13 and 14). The third (\(\pi-\pi^*\)) state is centered in ethanol/water at 136 nm and in the gas phase at 140 nm. This band is composed of one configuration (Table 11) and assigned as CT character. The fourth (\(\pi, \pi^*\)) state computed at 130 nm in ethanol/water, and in the gas phase at 129 nm. This state is composed of one configuration, which is also assigned as a charge transfer band (CT) (Figs. 13 and 14).

CONCLUSIONS

The molecular geometry of 1,4-dioxane in the ground state has been calculated by using density function theory (DFT-B3LYP/6-311G (d,p)). The optimized structure of the molecule is planar as indicated from the dihedral angles. The HOMO-LUMO energy gap helped in analyzing the chemical reactivity, hardness, softness, chemical potential, and electronegativity. We studied the Mullikan and natural charge distribution of 1,4-dioxane and the study determined the electronic charge distribution in 1,4-dioxane. The calculated dipole moment and the first order hyperpolarizability results indicate that 1,4-dioxane has a reasonable bad linear optical behavior. The NBO analysis indicated the intermolecular charge transfer between the bonding and anti-bonding orbitals. MEP confirmed the different negative and positive potential sites of the molecule in accordance with the total electron density surface. All bands in the UV spectra can be assigned to (\(\pi-\pi^*\)) transitions as reflected from their intensities. According to the high activity in physical parameters of 1,4-dioxane, the \(E_{\text{HOMO}}, E_{\text{LUMO}}, E_{\text{gap}}\) and dipole moment (\(\mu\)) were applied to the interaction with nano-CuSO\(_{4}\) solutions in 10% ethanol–water form 1:1 and 1:2 M/L complexes.
Increasing the thermodynamic parameters, Gibbs free energies, enthalpies and entropies of solvation increasing the temperature indicate more interactions.

Received : Nov. 24, 2017 ; Accepted : April 23, 2018

REFERENCES

