γ-Fe2O3@HAP-Fe2+ NPs: An Efficient and Eco-Friendly Catalyst for the Synthesis of Xanthene Derivatives in Water

Document Type : Research Article

Authors

1 Department of Chemistry, Payame Noor University, Tehran, I.R. IRAN

2 Department of Chemistry, Tabriz Branch, Islamic Azad University, Tabriz, I.R. IRAN

Abstract

Efficient and environmentally friendly syntheses of xanthenes derivatives by using γ-Fe2O3@HAP-Fe2+ NPs as a catalyst has been carried out. The catalyst can be readily isolated by using an external magnet and no obvious loss of activity was observed when the catalyst was reused in eight consecutive runs. The procedure has several advantages, such as economic availability of catalyst, simple procedure, ease of product isolation, no harmful byproducts, less reaction time and high yields.

Keywords

Main Subjects


    b) Moghimi A., Hosseinzadeh-Khanmiri R., Shaabani A., Hamadani H., A Green Synthesis of Nitrones from Diamino Glyoxime Using Aldehydes and Ketones, J. Iran. Chem. Soc., 10: 929-936 (2013).
    c) Moghimi A., Hosseinzadeh-Khanmiri R., Omrani I., Shaabani A., A New Library of 4(3H)- and 4,4′(3H,3H′)-quinazolinones and 2-(5-alkyl-1,2,4-oxadiazol-3-yl)quinazolin-4(3H)-one Obtained from Diaminoglyoxime, Tetrahedron Letters, 54: 3956-3959 (2013).
      e) Hosseinzadeh- Khanmiri R., Moghimi A., Shaabani A., Valizadeh H., Ng S. W., Diaminoglyoxime as a Versatile Reagent in the Synthesis of bis(1,2,4-oxadiazoles), 1,2,4-Oxadiazolyl-Quinazolines and 1,2,4-oxadiazolyl-benzothiazinones, Mol. Divers., 18: 769-776 (2014).
     f) Hosseinzadeh-Khanmiri R., Moghimi A., Shaabani A., Valizadeh H., Synthesis of 2-(1,2,4-oxadiazol-3-yl)quinazolin-4(3H)-ones from Diaminoglyoxime-based Nitrones, Ng S.W., Mol. Divers., 19: 501-510 (2015).
      g)Hassanpour A., Hosseinzadeh-Khanmiri R., Babazadeh M., Edjlali L., ZnO NPs: an Efficient and Reusable Nanocatalyst for the Synthesis of Nitrones from DAG Using H2O as a Solvent at Room-Temperature,Res Chem Intermed, 42: 2221-2231 (2016).
    i) Vessally E., Hosseinzadeh‐Khanmiri R., Ghorbani‐Kalhor E., Es’haghi M., Ejlali L., Eco-Friendly Synthesis of 3,4-dihydroquinoxalin-2-Amine, Diazepine-Tetrazole and Benzodiazepine-2-Carboxamide Derivatives with the Aid of MCM-48/H5PW10V2O40, Appl Organometal Chem., 31: e3729-      (2017).
    j) Babazadeh M., Hosseinzadeh-Khanmiri R., Zakhireh S., Eco-Friendly Synthesis of Benzoxazepine and Malonamide Derivatives in Aqueous Media, Appl. Organometal. Chem., 30: 514-     (2016).
  k) Mohammad Ziarani G., Saidian F., Gholamzadeh P., Badiei A., Abolhasani Soorki A., Green Synthesis of Pyrazol‑chromeno[2,3‑d]pyrimidinones using SBA-Pr-SO3H as an Efficient, Iran. J. Chem. Chem. Eng. (IJCCE), 36(6): 39-48 (2017).
    m) Vessally E., Hosseinian A., Edjlali L., Babazadeh M., Hosseinzadeh-Khanmiri R., New Strategy for the Synthesis of Morpholine Cores: Synthesis from N-Propargylamines, Iran. J. Chem. Chem. Eng. (IJCCE), 36(3): 1-13 (2017).
[2] a) Tsang S.C., Caps V., Paraskevas I., Chadwick D., Thompsett D., Magnetically Separable, Carbon-Supported Nanocatalysts for the Manufacture of Fine Chemicals, Angew. Chem., 116: 5763-      (2004).
     b) Edjlali L., Hosseinzdeh-Khanamiri R., Abolhasani J., Fe3O4 Nano-Particles Supported on Cellulose as an Efficient Catalyst for the Synthesis of Pyrimido[4,5-b]quinolines in Water, Monatsh. Chem., 146: 1339-1342 (2015).
     d) Behbahani M., Abolhasani J., Amini M.M., Sadeghi O., Omidi F., Bagheri A., Salarian M., Application of Mercapto Ordered Carbohydrate-Derived Porous Carbons for Trace Detection of Cadmium and Copper Ions in Agricultural Products, Food Chemistry, 173: 1207-1212 (2015).
   e) Kalate Bojdi M., Behbahani M., Mashhadizadeh M.H., Bagheri A., Davarani S.S.H., Farahani A., Mercapto-Ordered Carbohydrate-Derived Porous Carbon Electrode as a Novel Electrochemical Sensor for Simple and Sensitive Ultra-Trace Detection of Omeprazole in Biological Samples, Materials Science and Engineering: C, 48: 213-219 (2015).
      g) Mohammadi S., Musavi M., Abdollahzadeh F., Babadoust S., Hosseinian A., Application of Nanocatalysts in C-Te Cross-Coupling Reactions:  An Overview, Chem. Rev. Lett. 1: 49-55 (2018).
     h) Sarhandi S., Daghagheleh M., Vali M., Moghadami R., Vessally E., New Insight in Hiyama Cross-coupling Reactions: Decarboxylative, Denitrogenative and Desulfidative Couplings:
A Review
, Chem. Rev. Lett., 1: 9-15 (2018).
    i) Daghagheleh M., Vali M., Rahmani Z., Sarhandi S., Vessally E., A review on the CO2 Incorporation Reactions Using Arynes, Chem. Rev. Lett., 1: 23-30 (2018).
[3] a) Abolhasani J., Hosseinzadeh-Khanmiri R., Ghorbani-Kalhor E., Hassanpour A., Asgharinezhad A.A., Shekari N., Fathi A., An Fe3O4@SiO2@polypyrrole Magnetic Nanocomposite for the Extraction and Preconcentration of Cd(II) and Ni(II). Fathi, Anal. Methods, 7: 313-      (2015).
    b) Ghorbani-Kalhor E., Hosseinzadeh-Khanmiri R., Babazadeh M., Abolhasani J., Hassanpour A., Synthesis and Application of a Novel Magnetic Metal-Organic Framework Nanocomposite for Determination of Cd, Pb, and Zn in Baby Food Samples, Can. J. Chem., 93(5): 518-525 (2015).
    c) Hassanpour A., Hosseinzadeh-Khanmiri R., Babazadeh M., Abolhasani J., Ghorbani-Kalhor E., Determination of Heavy Metal Ions in Vegetable Samples Using a Magnetic Metal–Organic Framework Nanocomposite Sorbent, Food Addit. Contam. Part A, 32: 725-736 (2015).
   d) Ghorbani-Kalhor E., Hosseinzadeh-Khanmiri R., Abolhasani J., Babazadeh M., Hassanpour A., Determination of Mercury(II) Ions in Seafood Samples After Extraction and Preconcentration by a Novel Functionalized Magnetic Metal–Organic Framework Nanocomposite, J. Sep. Sci., 38: 1179-1186 (2015).
     e) Babazadeh M., Hosseinzadeh-Khanmiri R., Abolhasani J., Ghorbani-Kalhor E., Hassanpour A., Solid Phase Extraction of Heavy Metal Ions from Agricultural Samples with the Aid of a Novel Functionalized Magnetic Metal–Organic Framework, RSC Adv., 5: 19884-     (2015).
     f) Vessally E., Ghasemisarabbadeih M., Ekhteyari Z., Hosseinzadeh-Khanmiri R., Ghorbani-Kalhor E., Ejlali L., Platinum Nanoparticles Supported on Polymeric Ionic Liquid Functionalized Magnetic Silica: Effective and Reusable Heterogeneous Catalysts for the Selective Oxidation of Alcohols in Water, RSC Adv., 6: 106769-     (2016).
    j) Salami Kalajahi M., Moqadam S., Mahdavian M., Synthesis and Characterization of Sunflower Oil-based Polysulfide Polymer/Cloisite 30B Nanocomposites, Iranian Journal of Chemistry & Chemical Engineering (IJCCE), 38(1): 185- 192 (2018).
[4] Chikazumi S., Taketomi S., Ukita M., Mizukami M., Miyajima H., Setogawa M., Kurihara Y., Physics of Magnetic Fluids, J. Magn. Magn. Mater., 65: 245-251 (1987).
[5] Christe Sonia Mary M., Sasikumar S., Sodium Alginate/Starch Blends Loaded with Ciprofloxacin Hydrochloride as a Floating Drug Delivery System - In Vitro Evaluation, Iranian Journal of Chemistry & Chemical Engineering (IJCCE), 34(2): 25-31 (2015).
[6] Mornet S., Vasseur S., Grasset F., Verveka P., Goglio G., Demourgues A., Portier J., Pollert E., Duguet E., Magnetic Nanoparticle Design for Medical Applications, Prog. Solid State Chem., 34: 237-247 (2006).
[7] Graham D.L., Ferreira H.A., Freitas P.P., Magnetoresistive-Based Biosensors and Biochips, Trends. Biotechnol., 22(9): 455-462 (2004).
[8] Takafuji M., Ide S., Ihara H., Xu Z., Preparation of Poly(1-vinylimidazole)-Grafted Magnetic Nanoparticles and Their Application for Removal of Metal, Ions. Chem. Mater., 16: 1977-1983 (1977).
 [9] Hyeon T., Chemical Synthesis of Magnetic Nanoparticles, Chem. Commun., 927 (2003).
[12] Karaoğlu E., Baykal A., Senel M., Sözeri H., Toprak M.S., Synthesis and Characterization of Piperidine-4-Carboxylic Acid Functionalized Fe3O4 Nanoparticles as a Magnetic Catalyst for Knoevenagel Reaction, Mater. Res. Bull., 47: 2480-     (2012).
[13] Abu-Reziq R., Wang D., Post M., Alper H., Platinum Nanoparticles Supported on Ionic Liquid-Modified Magnetic Nanoparticles: Selective Hydrogenation Catalysts, Adv. Synth. Catal., 349: 2145-     (2007).
[14] Jiang Y.Y., Guo C., Xia H.S., Mahmood I., Liu C.Z., Liu H.Z., Magnetic Nanoparticles Supported Ionic Liquids for Lipase Immobilization: Enzyme Activity in Catalyzing Esterification, J. Mol. Catal. B: Enzym., 58: 103-109 (2009).
[15] Zheng X.X., Luo S.Z., Zhang L., Cheng J.P., Magnetic Nanoparticle Supported Ionic Liquid Catalysts for CO2 Cycloaddition Reactions, Green Chem., 11: 455-     (2009).
[18] a) Kassaee M.Z., Masrouri H., Movahedi F., Sulfamic Acid-Functionalized Magnetic Fe3O4 Nanoparticles as an Efficient and Reusable Catalyst for One-Pot Synthesis of α-Amino Nitriles in Water, Appl. Catal. A: General, 395: 28-33 (2011).
   b) Shahidi S., Farajzadeh P., Ojaghloo P., Karbakhshzadeh A., Hosseinian A., Nanocatalysts for Conversion of Aldehydes/Alcohols/Amines to Nitriles: A Review, Chem. Rev. Lett. 1: 37-44 (2018).
[19] Antony L.A.P., Slanina T., Sebej P., Šolomek T., Klan P., Fluorescein Analogue Xanthene-9-Carboxylic Acid: A Transition-Metal-Free CO Releasing Molecule Activated by Green Light, Org. Lett., 15: 4552-4555 (2013).
[21] Wang H., Lu L., Zhu S., Li Y., Cai W., The Phototoxicity of Xanthene Derivatives Against Escherichia Coli, Staphylococcus Aureus, and Saccharomyces Cerevisiae, Curr. Microbiol., 52: 21-26 (2006).
[22] Chibale K., Visser M., Schalkwyk D.V., Smith P.J., Saravanamuthu A., Fairlamb A.H., Exploring
the Potential of Xanthene Derivatives as Trypanothione Reductase Inhibitors and Chloroquine Potentiating Agents
, Tetrahedron, 59: 2289-2296 (2003).
[24] Bright G.R., Fisher G.W., Rogowska J., Taylor L., Fluorescence Ratio Imaging Microscopy: Temporal and Spatial Measurements of Cytoplasmic Ph, J. Cell Biol., 104: 1019-1033 (1987).
[25] Mirjalili B.B.F., Bamoniri A., Akbari A., BF3SiO2: an Efficient Alternative for the Synthesis of 14-aryl or Alkyl-14H-dibenzo[a,j]xanthenes, Tetrahedron, 49: 6454-6456 (2008).
[26] Bhowmik B.B., Ganguly P., Photophysics of Xanthene Dyes in Surfactant Solution, Spectrochim. Acta A., 61: 1997-2003 (2005).
[27] a) Teimouri A., Najafi Chermahini A., Ghorbanian L., The Green Synthesis of New Azo Dyes Derived from Salicylic Acid Derivatives Catalyzed via Baker’s Yeast and Solid Acid Catalysis, Chemija., 24(3): 59-66 (2013).
      b) Shoja A., Shirini F., Abedini M., Zanjanchi M.A., BiVO4-NPs as a New and Efficient Nano-Catalyst for the Synthesis of 1,8-Dioxo-Octahydro Xanthenes, J Nanostruct Chem., 4: 110-     (2014).
     c) Haeri H. S., Rezayati S., Rezaee Nezhad E., Darvishi H., Three-Component Synthesis of Pyrano[2,3-d]pyrimidinone Derivatives Catalyzed by Ni2+ Supported on Hydroxyapatite-Core–Shell-γ-Fe2O3 Nanoparticles in Aqueous Medium, Res Chem Intermed, 42(5): 7594-7609 (2016).
     d) Urinda S., Kundu D., Majee A., Hajra A., Indium Triflate-Catalyzed One-Pot Synthesis of 14-Alkyl or Aryl-14H-Dibenzo[a, j]Xanthenes in Water, Heteroatom Chemistry, 20: 232-234 (2009).
     f) Jin T.-S., Zhang J.-S., Xiao J-C., Wang A-Q., Li T-S., Clean Synthesis of 1,8-Dioxo-Octahydroxanthene Derivatives Catalyzed by p-Dodecylbenezenesulfonic Acid in Aqueous Media, SYNLETT, 5: 0866-0870 (2004).
     b) Mahdavinia G.H., Ghanbari M., Sepehrian M., Kooti H.F., MCM-41 Functionalized Sulfonic Acid Catalyzed One-Pot Synthesis of 1,8- Dioxo-Octahydroxanthenes, J. Iran. Chem. Res., 3: 117-120 (2010).
      c) Amini M., Seyyedhamzeh M.M., Bazgir A., Heteropolyacid: An Efficient and Eco-Friendly Catalyst for the Synthesis of 14-aryl-14H-dibenzo[a,j] xanthene, Appl. Catal., A., 323: 242-245
(2007).
[29] a) Kokkirala S., Sabbavarapu N.M., Yadavalli V.D.N., β-Cyclodextrin Mediated Synthesis of 1,8-Dioxooctahydroxanthenes in Water, European Journal of Chemistry, 2(2): 272-275 (2011).
     c) Jin T.S., Zhang J.S., Wang A.Q., Li T.S., Ultrasound-Assisted Synthesis of 1,8-dioxo-octahydroxanthene Derivatives Catalyzed by p-Dodecylbenzenesulfonic Acid in Aqueous Media, Ultrasonics Sonochemistry, 13(3): 220-224 (2006).