Methanol-to-Hydrocarbons Product Distribution over SAPO-34 and ZSM-5 Catalysts: The applicability of Thermodynamic Equilibrium and Anderson-Schulz-Flory Distribution

Document Type: Research Article


1 Catalysis Research Group, Petrochemical Research & Technology Company, National Petrochemical Company, P.O. Box: 14358-84711 Tehran, I.R. IRAN

2 Department of Chemical and Petroleum Engineering, Sharif University of Technology, P.O. Box: 11365-8639 Tehran, I.R. IRAN


The product distribution of methanol to hydrocarbons conversion over SAPO-34 and ZSM-5 catalysts was studied using thermodynamic equilibrium and Anderson-Schulz-Flory (ASF) distributions. The equilibrium compositions were calculated using constrained Gibbs free energy minimization. The effect of catalyst type was considered by setting upper limits to product carbon number due to shape selectivity according to zeotype catalyst channel size; that is, n£5 for SAPO-34 but n£6 for aliphatic and n£10 for aromatic compounds over H-ZSM-5 catalyst. The equilibrium selectivity of kinds of paraffin is negligible over SAPO-34 system while that of olefins is very small over H-ZSM-5, both in agreement with experimental results for methanol to olefins and to gasoline, respectively. The methanol to olefins hydrocarbon product distributions over SAPO-34 and H-ZSM-5 showed fair agreements with thermodynamic equilibrium and ASF distributions, respectively. It was found that propylene is the only product the selectivity of which can be maximized among hydrocarbon products over both SAPO-34 and ZSM-5 catalysts, and therefore, it can be an easier target molecule in methanol to hydrocarbon conversions.


Main Subjects

[1] Sousa-Aguiar E.F., Appel L.G., Mota C., Natural Gas Chemical Transformations: The Path to Refining in the Future, Catal. Today, 101: 3-7 (2005).

[2] Wu W., Guo W., Xiao W., Luo M., Dominant Reaction Pathway for Methanol Conversion to Propene over High Silicon H-ZSM-5, Chem. Eng. Sci., 66: 4722-4732 (2011).

[3] Olah G.A., Molnár Á., “Hydrocarbon Chemistry”, 2nd ed., John Wiley & Sons, Inc., New York (2003).

[4] Qi G., Xie Z., Yang W., Zhong S., Liu H., Zhang C., Chen, Q., Behaviors of Coke Deposition on SAPO-34 Catalyst during Methanol Conversion to Light Olefins, Fuel Process. Technol., 88: 437-441 (2007).

[5] Wang P., Lv A., Hu J., Xu J., Lu G., In Situ Synthesis of SAPO-34 Grown onto Fully Calcined Kaolin Microspheres and Its Catalytic Properties for MTO Reaction, Ind. Eng. Chem. Res., 50: 9989-9997 (2011).

[6] Yang G., Wei Y., Xu S., Chen J., Li J., Liu Z., Yu J., Xu R., Nanosize-enhanced Lifetime of SAPO-34 Catalysts in Methanol-to-Olefin Reactions, J. Phys. Chem. C, 117: 8214-8222 (2013).

[7] Karge H.G., Hunger M., Beyer H.K., Chapter No. 4: Characterization of Zeolites-Infrared and Nuclear Magnetic Resonance Spectroscopy and X-Ray Diffraction, in: Weitkamp, J., Puppe L., (eds.), “Catalysis and Zeolites: Fundamentals and Applications”, Springer -Verlag Berlin (1999).

[8] Olsbye U., Svelle S., Bjørgen M., Beato P., Janssens T.V.W., Joensen F., Bordiga S., Lillerud K.P., Conversion of Methanol to Hydrocarbons: How Zeolite Cavity and Pore Size Controls Product Selectivity, Angew. Chem. Int. Ed., 51: 5810-5831 (2012).

[9] Tian P., Wei Y., Ye M. Liu, Z., Methanol to Olefins (MTO): From Fundamentals to Commercialization, ACS Catal., 5: 1922-1938 (2015).

[10] Fogler H.S., “Elements of Chemical Reaction Engineering”, 3rd ed., Prentice Hall, New Jersey (1999).

[11] Speight J.G., “Handbook of Industrial Hydrocarbon Processes”, Elsevier, Amsterdam (2010).

[13] Zhang R., Zhang Y., Zhang Q., Xie H., Qian W., Wei F., Growth of Half-meter Long Carbon Nanotubes Based on Schulz-Flory Distribution, ACS Nano, 7: 6156-6161 (2013).

[15] Tau L-M., Fort A.W., Bao S., Davis B.H., Methanol to Gasoline: 14C Tracer Studies of the Conversion of Methanol/Higher Alcohol Mixtures over ZSM-5, Fuel Process. Technol., 26: 209-219 (1990).

[16] Cai D., Wang Q., Jia Z., Ma Y., Cui Y., Muhammad U., Wang Y., Qian W., Wei F., Equilibrium Analysis of Methylbenzene Intermediates for a Methanol-to-Olefins Process, Catal. Sci. Technol., 6: 1297-1301 (2016).

[17] Liu B., Yao B., Gonzalez-Cortes S., Kuznetsov V.L., AlKinany M., Aldrees S.A., Tiancun Xiao, Peter P. Edwards, A Research into the Thermodynamics of Methanol to Hydrocarbon (MTH): Conflictions between Simulated Product Distribution and Experimental Results, Appl Petrochem Res., 7: 55–66 (2017).

 [18] Yaripour F., Shariatinia Z., Sahebdelfar S., Irandoukht A., Effect of Boron Incorporation
on the Structure, Products Selectivities and Lifetime of H-ZSM-5 Nanocatalyst Designed for Application in Methanol-to-Olefins (MTO) Reaction
, Micropor. Mesopor. Mat., 203: 41-53 (2015).

[19] Perry R.H., Green D.W., Maloney J.O., “Perry's Chemical Engineers' Handbook”, Eighth Edition, McGraw-Hill, New York (2008).

[22] Farzi A., Jomea M.J., Simulation and Control of a Methanol-To-Olefins (MTO) Laboratory Fixed-Bed Reactor, Iran. J. Chem. Chem. Eng. (IJCCE), 36, 175-190 (2017).

[23] Lu J., Wang X., Li H., Catalytic Conversion of Methanol to Olefins over Rare Earth (La, Y) Modified SAPO-34, React. Kin. Catal, Lett., 97: 225-261 (2009).

[24] Wang P., Lv A., Hu J., Xu J., Lu G., The Synthesis of SAPO-34 with Mixed Template and Its Catalytic Performance for Methanol to Olefins Reaction. Micropor. Mesopor. Mat., 152: 178-184 (2012). 

[25] Liu G., Tian P., Li J., Zhang D., Zhoub F., Liu Z., Synthesis, Characterization and Catalytic Properties of SAPO-34 Synthesized Using Diethylamine as a Template, Micropor. Mesopor. Mat., 111: 143-149 (2008).

[27] Chang C.D., Silvestri A.J., The Conversion of Methanol and Other O-compounds to Hydrocarbons over Zeolite Catalysts, J. Catal., 47: 249-259 (1977).

[28] Gubisch D., Bandermann F., Conversion of Methanol to Light Olefins over Zeolite H-T, Chem. Eng. Technol. 12: 155-161 (1989).

[29] Fougerit J.M., Gnep, N.S., Guisnet M., Selective Transformation of Methanol into Light Olefins
over a Mordenite Catalyst: Reaction Scheme and Mechanism
, Micropor. Mesopor. Mat., 29: 79-89 (1999).

[30] Zhao W., Zhang B., Wang G., Guo H., Methane Formation Route in the Conversion of Methanol
to Hydrocarbons
, J. Energy Chem., 23: 201-206 (2014).

[31] Wu E.L., Kuhl G.H., Whyte T.E., Venuto P.B., Molecular Sieve Zeolites-I, Adv. Chem. Ser., 101: 490-498 (1971).

[32] Haag W.O., Dessau R.M., “Proceedings of the Eighth International Congress on Catalysis”, July 2-6, 1984, Berlin, Germany, Vol. 2, Verlag Chemie, Weinheim, p. 305 (1984).

[33] Chen D., Moljord K., Fuglerud T., Holmen A., The Effect of Crystal Size of SAPO-34 on the Selectivity and Deactivation of the MTO Reaction, Micropor. Mesopor. Mat., 29: 191-203 (1999).

[34] Hirota Y., Murata K., Miyamoto M., Egashira Y., Nishiyama N., Light Olefins Synthesis from Methanol and Dimethylether over SAPO-34 Nanocrystals, Catal. Lett., 140: 22-26 (2010).

[35] Wu X., Abraha M.G., Anthony R.G., Methanol conversion on SAPO-34: Reaction Condition for Fixed-bed Reactor, Appl. Catal. A: Gen., 260: 63-69 (2004).

[36] Askari S., Halladj R., Sohrabi M., Methanol Conversion to Light Olefins over Sonochemically Prepared SAPO-34 Nanocatalyst, Micropor. Mesopor. Mat., 163: 334-342 (2012).

[37] Chen D., Moljord K., Holmen A., A Methanol to Olefins Review: Diffusion, Coke Formation and Deactivation on SAPO Type Catalysts, Micropor. Mesopor. Mat., 164: 239–250 (2012).