Electro-Catalytic Oxidation of Methanol at Ni(OH)2 Nanoparticles-Poly (o-Anisidine)/Triton X-100 Film onto Phosphotungstic Acid-Modified Carbon Paste Electrode

Document Type: Research Article

Authors

1 Department of Chemistry, Faculty of Chemistry, North Tehran Branch, Islamic Azad University, 1913674711, Tehran, I.R. IRAN

2 Electroanalytical Chemistry Research Laboratory, Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, P.O. Box 47416-95447 Babolsar, I.R. IRAN

3 Nanochemistry Research Laboratory, Faculty of Chemistry, University of Mazandaran, P.O. BOX 47416-95447 Babolsar, I.R. IRAN

Abstract

In this work, Phosphotungstic Acid modified Carbon Paste Electrode (PWA-CPE) is used as a substrate for electro-polymerization of o-Anisidine (OA). Also, Triton X-100 (TX-100) surfactant is used as an additive for electrochemical polymerization of OA onto the PWA-CPE, which is investigated as a novel matrix for dispersion of nickel species. The prepared electrodes are characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and electrochemical methods. Growth of the poly o-Anisidine (POA) film in the absence of TX-100 and/or PWA is very poor, while it considerably increases in the presence of them. The methanol oxidation and stability of the Ni/POA (TX-100)/PWA-CPE are investigated by various electrochemical techniques. It has been shown that the poly (o-Anisidine)/Triton X-100 (POA (TX-100)) at the surface of PWA-CPE improves the catalytic efficiency of the dispersed Ni(OH)2 nanoparticles towards methanol oxidation.

Keywords

Main Subjects


[1] Steele BCH., Heinzel A., Materials for Fuel-Cell technologie, Nature, 414 (6861):345-352(2001).

[2] Bensebaa F., Farah AA., Wang D., Bock C., Du X., Kung J., Le Page Y., Microwave Synthesis of Polymer-Embedded Pt−Ru Catalyst for Direct Methanol Fuel Cell, The J. Phys. Chem., B 109(32): 15339-15344(2005).

[4] Tammam RH., Fekry AM., Saleh MM., Electrocatalytic Oxidation of Methanol on Ordered Binary Catalyst of Manganese and Nickel Oxide Nanoparticles, Int. J. Hydrogen Energy, 40(1): 275-283 (2015).

[5] Ren F., Zhou R., Jiang F., Zhou W., Du Y., Xu J., Wang C., Preparation of Platinum-Poly(O-dihydroxybenzene) Composite Catalyst and Its Electrocatalytic Activity Toward Methanol and Formic Acid Oxidation., Fuel Cells, 12(1): 116-123 (2012).

[8] Misono M., Heterogeneous Catalysis by Heteropoly Compounds of Molybdenum and Tungsten, Catal. Rev., 29 (2-3):269-321(1987).

[9] Oh S-y., Kikuchi T., Kawamura G., Muto H., Matsuda A., Proton Conductive Composite Electrolytes in the KH2PO4–H3PW12O40 System for H2/O2 Fuel Cell Operation, Appl. Energy, 112: 1108-1114(2013).

[10] Xu W., Lu T, Liu C., Xing W., Low Methanol Permeable Composite Nafion/Silica/PWA Membranes for Low Temperature Direct Methanol Fuel Cells, Electrochim.Acta, 50(16–17): 3280-3285 (2005).

[14] Habibi E., Razmi H., Kinetics of Direct Ethanol Fuel Cell Based on Pt-PoPD Nano Particle Anode Catalyst, Int. J. Hydrogen Energy, 38 (13): 5442-5448 (2013).

[15] Habibi B., Pournaghi-Azar M.H., Abdolmohammad-Zadeh H.,Razmi H.,Electrocatalytic Oxidation of Methanol on Mono and Bimetallic Composite Films: Pt and Pt-M (M = Ru, Ir and Sn) Nano-Particles
in Poly (o-aminophenol)
, Int. J. Hydrogen Energy, 34(7): 2880-2892 (2009).

[16] Sung H., Lee T., Paik W-k., Electroactive Counter Anions in Conducting Polypyrrole: Hexacyanoferrate and Heteropolytungstate Ions, Synth. Met., 69 (1-3): 485-486(1995).

[18] Pielichowski K., Hasik M., Thermal Properties of New Catalysts Based on Heteropolyanion-Doped Polyaniline, Synth. Met., 89(3): 199-202 (1997).

[19] Stochmal-Pomarzanska E.,Quillard S., Hasik M., Turek W., Pron A., Lapkowski M., Lefrant S Spectroscopic and Catalytic Studies of Selected Polyimines Protonated with Heteropolyacids, Synth. Met., 84(1–3):427-428(1997).

[20] Chaudhari S., Mandale A.B., Patil K.R., Sainkar S.R., Patil P.P., Formation of Poly(o-anisidine) Coatings on Copper from Aqueous Salicylate Solution, Surface Coat. Technol., 200(18-19): 5557-5565 (2006).

[21] Hosseini S.R., Hosseinzadeh R., Ghasemi S., FarzanehN., Synthesis of Poly (2-Methoxyaniline)/Sodium Dodecyl Sulfate Film Including Bimetallic Pt–Cu Nanoparticles and Its Application for Formic Acid Oxidation, Int. J. Hydrogen Energy, 40(5):2182-2192(2015).

[23] Sakmeche N., Aeiyach S., Aaron J.-J., Jouini M., Lacroix J.C., Lacaze P.-C., Improvement of the Electrosynthesis and Physicochemical Properties of Poly(3,4-ethylenedioxythiophene) Using a Sodium Dodecyl Sulfate Micellar Aqueous Medium, Langmuir, 15(7): 2566-2574 (1999).

[25] Pelizzetti E., Pramauro E., Analytical Applications of Organized Molecular Assemblies, Anal. Chim. Acta., 169: 1-29(1985).

[26] McLntire G.L., Dorsey J.G., Micelles in Analytical Chemistry, Critical Rev. Anal. Chem., 21(4):257-278(1990).

[29] Khan R., Kaushik A., Mishra AP., Immobilization of Cholesterol Oxidase onto Electrochemically Polymerized Film of Biocompatible Polyaniline-Triton X-100, Mat. Sci. Eng.: C, 29(4): 1399-1403 (2009).

[30] Girija TC., Sangaranarayanan MV., Polyaniline-Based Nickel Electrodes for Electrochemical Supercapacitors—Influence of Triton X-100, J. Power Sour., 159(2):1519-1526(2006).

[32] Profeti D., Olivi P., Methanol Electrooxidation on Platinum Microparticles Electrodeposited on
poly (o-methoxyaniline) Films
, Electrochim.Acta, 49(27):4979-4985(2004).

[34] Ojani R., Raoof J.B., Safshekan S., Nickel Modified Ionic Liquid/Carbon Paste Electrode for highly Efficient Electrocatalytic Oxidation of Methanol in Alkaline Medium, J. Solid State Electrochem., 16(8):2617-2622(2012).

[35] Liu S.J., Kinetics of Methanol Oxidation on poly(NiII–tetramethyldibenzotetraaza[14] annulene)-Modified Electrodes, Electrochim. Acta, 9(19):3235-3241 (2004).

[37] Golikand A.N., Shahrokhian S., Asgari M., Ghannadi Maragheh M., Irannejad L., Khanchi A., Electrocatalytic Oxidation of Methanol on a Nickel Electrode Modified by Nickel Dimethylglyoxime Complex in Alkaline Medium, J. Power Sour., 144(1): 21-27(2005).

[38] Ciszewski A., Milczarek G., Lewandowska B., Krutowski K., Electrocatalytic Properties of Electropolymerized Ni(II)curcumin Complex, Electroanal., 15(5-6):518-523(2003).

[39] Xu C., Hu Y., Rong J., Jiang S.P., Liu Y., Ni hollow Spheres as Catalysts for Methanol and Ethanol Eectrooxidation, Electrochem. Commun., 9(8): 2009-2012 (2007).

[40] Bard A.J., Faulkner L.R., “Electrochemicalmethods, Fundamentals and Applications”, John Wiley & Sons Inc., New York (2001).